Gruppi di permutazioni e risultati di irrazionalità

Carlo Viola

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 2, page 375-400
  • ISSN: 0392-4041

Abstract

top
We recall some basic concepts in diophantine approximation, in particular the notion of irrationality measure. We describe the main aspects of the permutation group method due to G. Rhin and the author, with some arithmetical applications.

How to cite

top

Viola, Carlo. "Gruppi di permutazioni e risultati di irrazionalità." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 375-400. <http://eudml.org/doc/290454>.

@article{Viola2008,
author = {Viola, Carlo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {375-400},
publisher = {Unione Matematica Italiana},
title = {Gruppi di permutazioni e risultati di irrazionalità},
url = {http://eudml.org/doc/290454},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Viola, Carlo
TI - Gruppi di permutazioni e risultati di irrazionalità
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 375
EP - 400
LA - ita
UR - http://eudml.org/doc/290454
ER -

References

top
  1. AMOROSO, F. - VIOLA, C., Approximation measures for logarithms of algebraic numbers, Ann. Scuola Norm. Sup. Pisa (4) 30 (2001), 225-249. Zbl1008.11028MR1882030
  2. APÉRY, R., Irrationalité de ζ ( 2 ) et ζ ( 3 ) , Astérisque61 (1979), 11-13. 
  3. BALL, K. - RIVOAL, T., Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math.146 (2001), 193-207. Zbl1058.11051MR1859021DOI10.1007/s002220100168
  4. BEUKERS, F., A note on the irrationality of ζ ( 2 ) and ζ ( 3 ) , Bull. London Math. Soc.11 (1979), 268-272. Zbl0421.10023MR554391DOI10.1112/blms/11.3.268
  5. EULER, L., De fractionibus continuis dissertatio, Commentarii Acad. Sci. Imper. Petropol.9 (1737), 98-137. Opera omnia, ser. I vol. 14, Teubner, Leipzig-Berlin, 1925, 187-215. MR232653
  6. FISCHLER, S., Groupes de Rhin-Viola et intégrales multiples, J. Théor. Nombres Bordeaux15 (2003), 479-534. Zbl1074.11040MR2140865
  7. GIACARDI, L. - ROERO, C. S. - VIOLA, C., Sui contributi di Lagrange alla teoria dei numeri, Rend. Sem. Mat. Univ. Pol. Torino53 (1995), 151-181. MR1452376
  8. HARDY, G. H. - WRIGHT, E. M., An Introduction to the Theory of Numbers, IV ediz., Oxford Univ. Press, 1960. MR67125
  9. HATA, M., Rational approximations to π and some other numbers, Acta Arith.63 (1993), 335-349. Zbl0776.11033MR1218461DOI10.4064/aa-63-4-335-349
  10. HATA, M., Rational approximations to the dilogarithm, Trans. Amer. Math. Soc.336 (1993), 363-387. Zbl0768.11022MR1147401DOI10.2307/2154351
  11. RADEMACHER, H., Topics in Analytic Number Theory, Grundlehren math. Wiss., Band 169, Springer-Verlag, Berlin-Heidelberg, 1973. Zbl0253.10002MR364103
  12. RHIN, G. - VIOLA, C., On a permutation group related to ζ ( 2 ) , Acta Arith.77 (1996), 23- 56. Zbl0864.11037MR1404975DOI10.4064/aa-77-1-23-56
  13. RHIN, G. - VIOLA, C., The group structure for ζ ( 3 ) , Acta Arith.97 (2001), 269-293. Zbl1004.11042MR1826005DOI10.4064/aa97-3-6
  14. RHIN, G. - VIOLA, C., The permutation group method for the dilogarithm, Ann. Scuola Norm. Sup. Pisa (5) 4 (2005), 389-437. Zbl1170.11316MR2185863
  15. RHIN, G. - VIOLA, C., Multiple integrals and linear forms in zeta-values, Funct. Approx. Comment. Math.37 (2007), 429-444. Zbl1193.11073MR2363836DOI10.7169/facm/1229619663
  16. RIVOAL, T., La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris, Sér. I Math., 331 (2000), 267-270. Zbl0973.11072MR1787183DOI10.1016/S0764-4442(00)01624-4
  17. ROTH, K. F., Rational approximations to algebraic numbers, Mathematika2 (1955), 1-20. Zbl0064.28501MR72182DOI10.1112/S0025579300000644
  18. SIEGEL, C. L., Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., 1929, n. 1. Gesammelte Abhandlungen, Band I, Springer-Verlag, Berlin-Heidelberg, 1966, 209-266. MR197270
  19. VIOLA, C., Hypergeometric functions and irrationality measures, in: Analytic Number Theory, Y. Motohashi (ed.), London Math. Soc. Lecture Note Series247, Cambridge Univ. Press, 1997, 353-360. Zbl0904.11020MR1695002DOI10.1017/CBO9780511666179.024
  20. VIOLA, C., Birational transformations and values of the Riemann zeta-function, J. Théor. Nombres Bordeaux15 (2003), 561-592. Zbl1074.11041MR2140868
  21. VIOLA, C., The arithmetic of Euler's integrals, Riv. Mat. Univ. Parma (7) 3* (2004), 119-149. Zbl1166.11340MR2128843
  22. VIOLA, C., Approssimazione diofantea, frazioni continue e misure d'irrazionalità, Boll. U.M.I. (8) 7-A (2004), 291-320. Addendum, Boll. U.M.I. (8) 8-A (2005), 179-182. 
  23. VIOLA, C., On the equivalence of Beukers-type and Sorokin-type multiple integrals, in: Proceedings of the conference "Diophantine and analytic problems in number theory", Moscow, 29/1 - 2/2/2007 (in corso di pubblicazione). 
  24. ZUDILIN, W., Arithmetic of linear forms involving odd zeta values, J. Théor. Nombres Bordeaux16 (2004), 251-291. Zbl1156.11327MR2145585

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.