Utilisation de la conjugaison complexe dans l’étude de la transcendance de valeurs de la fonction exponentielle usuelle
Guy Diaz[1]
- [1] Université de Saint-Etienne LARAL 23 rue du Dr Paul Michelon 42023 Saint-Etienne Cedex 2, FRANCE
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 535-553
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDiaz, Guy. "Utilisation de la conjugaison complexe dans l’étude de la transcendance de valeurs de la fonction exponentielle usuelle." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 535-553. <http://eudml.org/doc/249257>.
@article{Diaz2004,
abstract = {Ce texte illustre l’usage que l’on peut faire de la conjugaison complexe en transcendance. Il montre aussi que la dérivation et le principe du maximum ne sont pas toujours des outils indispensables dans les preuves de transcendance. Ces deux constatations mises côte a côte permettront peut être de traiter quelques cas particuliers de la conjecture de Schanuel.},
affiliation = {Université de Saint-Etienne LARAL 23 rue du Dr Paul Michelon 42023 Saint-Etienne Cedex 2, FRANCE},
author = {Diaz, Guy},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {transcendence; Hermite; Lindemann; Gel'fond; Schneider; exponential function; Schanuel's conjecture; Schwarz Lemma; complex conjugation},
language = {fre},
number = {3},
pages = {535-553},
publisher = {Université Bordeaux 1},
title = {Utilisation de la conjugaison complexe dans l’étude de la transcendance de valeurs de la fonction exponentielle usuelle},
url = {http://eudml.org/doc/249257},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Diaz, Guy
TI - Utilisation de la conjugaison complexe dans l’étude de la transcendance de valeurs de la fonction exponentielle usuelle
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 535
EP - 553
AB - Ce texte illustre l’usage que l’on peut faire de la conjugaison complexe en transcendance. Il montre aussi que la dérivation et le principe du maximum ne sont pas toujours des outils indispensables dans les preuves de transcendance. Ces deux constatations mises côte a côte permettront peut être de traiter quelques cas particuliers de la conjecture de Schanuel.
LA - fre
KW - transcendence; Hermite; Lindemann; Gel'fond; Schneider; exponential function; Schanuel's conjecture; Schwarz Lemma; complex conjugation
UR - http://eudml.org/doc/249257
ER -
References
top- G. Diaz, La conjecture des quatre exponentielles et les conjectures de D. Bertrand sur la fonction modulaire. J. Théorie des Nombres de Bordeaux 9 (1997), 229–245. Zbl0887.11030MR1469670
- A.0. Gel’Fond, Ju.V. Linnik, Méthodes élémentaires dans la théorie analytique des Nombres. Monographies internationales de Mathématiques modernes vol. 6, Gauthier-Villars, Paris, 1965. Zbl0125.29604MR188136
- M. Laurent, Sur quelques résultats récents de transcendance. Astérisque n 198-200 (1991), 209–230. Zbl0762.11027MR1144324
- D. Roy, An arithmetic criterion for the values of the exponential function. Acta Arith. XCVII. 2 (2001), 183–194. Zbl0981.11025MR1824984
- M. Waldschmidt, Une méthode élémentaire dans la théorie des nombres transcendants I, II. Séminaire DPP, n G1 et G5 (1972/73). Zbl0325.10021MR396426
- M. Waldschmidt, Nombres transcendants. Lecture Notes in Mathematics vol. 402, Springer-Verlag, Berlin-New York, 1974. Zbl0302.10030MR360483
- M. Waldschmidt, Diophantine approximation on linear algebraic groups. Grundlerhen der mathematischen Wissenschaften, vol. 326, Springer-Verlag, Berlin-Heidelbeg-New York, 2000. Zbl0944.11024MR1756786
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.