Homology for irregular connections
Spencer Bloch[1]; Hélène Esnault[2]
- [1] Dept. of Mathematics University of Chicago Chicago, IL 60637, USA
- [2] Mathematik Universität Essen FB6, Mathematik 45117 Essen, Germany
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 2, page 357-371
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBloch, Spencer, and Esnault, Hélène. "Homology for irregular connections." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 357-371. <http://eudml.org/doc/249277>.
@article{Bloch2004,
abstract = {Homology with values in a connection with possibly irregular singular points on an algebraic curve is defined, generalizing homology with values in the underlying local system for a connection with regular singular points. Integration defines a perfect pairing between de Rham cohomology with values in the connection and homology with values in the dual connection.},
affiliation = {Dept. of Mathematics University of Chicago Chicago, IL 60637, USA; Mathematik Universität Essen FB6, Mathematik 45117 Essen, Germany},
author = {Bloch, Spencer, Esnault, Hélène},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {357-371},
publisher = {Université Bordeaux 1},
title = {Homology for irregular connections},
url = {http://eudml.org/doc/249277},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Bloch, Spencer
AU - Esnault, Hélène
TI - Homology for irregular connections
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 357
EP - 371
AB - Homology with values in a connection with possibly irregular singular points on an algebraic curve is defined, generalizing homology with values in the underlying local system for a connection with regular singular points. Integration defines a perfect pairing between de Rham cohomology with values in the connection and homology with values in the dual connection.
LA - eng
UR - http://eudml.org/doc/249277
ER -
References
top- P. Deligne, Équations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics 163, Springer Verlag, 1970. Zbl0244.14004MR417174
- N. Kachi, K. Matsumoro, M. Mihara, The perfectness of the intersection pairings for twisted cohomology and homology groups with respect to rational -forms. Kyushu J. Math. 53 (1999), 163–188. Zbl0933.14009MR1678026
- G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles, et conjecture de Weil. Publ. Math. IHES 65 (1987), 131–210. Zbl0641.14009MR908218
- B. Malgrange, Équations Différentielles à Coefficients Polynomiaux. Progress in Math. 96, Birkhäuser Verlag, 1991. Zbl0764.32001MR1117227
- B. Malgrange, Remarques sur les équations différentielles à points singuliers irréguliers. Springer Lecture Notes in Mathematics 712 (1979), 77–86. Zbl0423.32014MR548145
- B. Malgrange, Sur les points singuliers des équations différentielles. L’Enseignement mathématique, t. 20, 1-2 (1974), 147–176. Zbl0299.34011MR368074
- T. Saito, T. Terasoma, Determinant of Period Integrals. J. AMS 10 (1997), 865–937. Zbl0956.14005MR1444751
- T. Terasoma, Confluent Hypergeometric Functions and Wild Ramification. Journ. of Algebra 185 (1996), 1–18. Zbl0873.12004MR1409971
- T. Terasoma, A Product Formula for Period Integrals. Math. Ann. 298 (1994), 577–589. Zbl0811.32014MR1268595
- G.N. Watson, E.T. Whittaker, A Course of modern Analysis. Cambridge University Press, 1965. Zbl45.0433.02MR1424469
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.