Integral representations for solutions of exponential Gauß-Manin systems
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 4, page 505-532
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topHien, Marco, and Roucairol, Céline. "Integral representations for solutions of exponential Gauß-Manin systems." Bulletin de la Société Mathématique de France 136.4 (2008): 505-532. <http://eudml.org/doc/272310>.
@article{Hien2008,
abstract = {Let $f,g:U \rightarrow \{\mathbb \{A\}\}^1 $ be two regular functions from the smooth affine complex variety $U $ to the affine line. The associated exponential Gauß-Manin systems on the affine line are defined to be the cohomology sheaves of the direct image of the exponential differential system $\mathcal \{O\}_U e^g $ with respect to $f $. We prove that its holomorphic solutions admit representations in terms of period integrals over topological chains with possibly closed support and with rapid decay condition.},
author = {Hien, Marco, Roucairol, Céline},
journal = {Bulletin de la Société Mathématique de France},
keywords = {gauß-Manin systems; $\mathcal \{D\} $-modules},
language = {eng},
number = {4},
pages = {505-532},
publisher = {Société mathématique de France},
title = {Integral representations for solutions of exponential Gauß-Manin systems},
url = {http://eudml.org/doc/272310},
volume = {136},
year = {2008},
}
TY - JOUR
AU - Hien, Marco
AU - Roucairol, Céline
TI - Integral representations for solutions of exponential Gauß-Manin systems
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 4
SP - 505
EP - 532
AB - Let $f,g:U \rightarrow {\mathbb {A}}^1 $ be two regular functions from the smooth affine complex variety $U $ to the affine line. The associated exponential Gauß-Manin systems on the affine line are defined to be the cohomology sheaves of the direct image of the exponential differential system $\mathcal {O}_U e^g $ with respect to $f $. We prove that its holomorphic solutions admit representations in terms of period integrals over topological chains with possibly closed support and with rapid decay condition.
LA - eng
KW - gauß-Manin systems; $\mathcal {D} $-modules
UR - http://eudml.org/doc/272310
ER -
References
top- [1] S. Bloch & H. Esnault – « Homology for irregular connections », J. Théor. Nombres Bordeaux16 (2004), p. 357–371. Zbl1075.14016MR2143558
- [2] A. Borel – Algebraic -modules, Perspectives in Math., vol. 2, Academic Press, 1987. Zbl0642.32001
- [3] A. Dimca, F. Maaref, C. Sabbah & M. Saito – « Dwork cohomology and algebraic -modules », Math. Ann.318 (2000), p. 107–125. Zbl0985.14007MR1785578
- [4] A. Dimca & M. Saito – « On the cohomology of a general fiber of a polynomial map », Compositio Math.85 (1993), p. 299–309. Zbl0824.14016MR1214449
- [5] M. Hien – « Periods for irregular singular connections on surfaces », Math. Ann.337 (2007), p. 631–669. Zbl1118.14024MR2274546
- [6] N. M. Katz – « On the calculation of some differential Galois groups », Invent. Math.87 (1987), p. 13–61. Zbl0609.12025MR862711
- [7] F. Maaref – « Sur un analogue irrégulier de la connexion de Gauss-Manin », Ann. Fac. Sci. Toulouse Math. (6) 8 (1999), p. 117–124. Zbl0965.32020MR1721566
- [8] H. Majima – Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics, vol. 1075, Springer, 1984. Zbl0546.58003MR757897
- [9] B. Malgrange – Équations différentielles à coefficients polynomiaux, Progress in Mathematics, vol. 96, Birkhäuser, 1991. Zbl0764.32001MR1117227
- [10] F. Pham – Singularités des systèmes différentiels de Gauss-Manin, Progress in Mathematics, vol. 2, Birkhäuser, 1979. Zbl0524.32015
- [11] —, « La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin », Astérisque130 (1985), p. 11–47. Zbl0597.32012MR804048
- [12] —, Intégrales singulières, Savoirs Actuels, EDP Sciences/CNRS Éditions, 2005. Zbl1125.42001
- [13] C. Roucairol – « Irregularity of an analogue of the Gauss-Manin systems », Bull. Soc. Math. France134 (2006), p. 269–286. Zbl1122.32019MR2233709
- [14] —, « The irregularity of the direct image of some -modules », Publ. Res. Inst. Math. Sci.42 (2006), p. 923–932. Zbl1132.32005MR2289081
- [15] —, « Formal structure of direct image of holonomic -modules of exponential type », Manuscripta Math.124 (2007), p. 299–318. Zbl1140.32021MR2350548
- [16] C. Sabbah – « Équations différentielles à points singuliers irréguliers en dimension », Ann. Inst. Fourier (Grenoble) 43 (1993), p. 1619–1688. Zbl0803.32005MR1275212
- [17] —, « Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2 », Astérisque 263 (2000), p. 190. Zbl0947.32005
- [18] R. G. Swan – « The theory of sheaves », 1964. Zbl0119.25801
- [19] J.-L. Verdier – « Classe d’homologie associée à un cycle », in Séminaire de géométrie analytique (École Norm. Sup., Paris, 1974-75) Astérisque 36–37 (1976), p. 101–151. Zbl0346.14005MR447623
- [20] —, « Stratifications de Whitney et théorème de Bertini-Sard », Invent. Math.36 (1976), p. 295–312. Zbl0333.32010MR481096
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.