In search for Lindelöf ’s
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 1, page 145-151
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBuzyakova, Raushan Z.. "In search for Lindelöf $C_p$’s." Commentationes Mathematicae Universitatis Carolinae 45.1 (2004): 145-151. <http://eudml.org/doc/249359>.
@article{Buzyakova2004,
abstract = {It is shown that if $X$ is a first-countable countably compact subspace of ordinals then $C_p(X)$ is Lindelöf. This result is used to construct an example of a countably compact space $X$ such that the extent of $C_p(X)$ is less than the Lindelöf number of $C_p(X)$. This example answers negatively Reznichenko’s question whether Baturov’s theorem holds for countably compact spaces.},
author = {Buzyakova, Raushan Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C_p(X)$; space of ordinals; Lindelöf space; ; space of ordinals; Lindelöf space; countably compact space},
language = {eng},
number = {1},
pages = {145-151},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {In search for Lindelöf $C_p$’s},
url = {http://eudml.org/doc/249359},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Buzyakova, Raushan Z.
TI - In search for Lindelöf $C_p$’s
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 1
SP - 145
EP - 151
AB - It is shown that if $X$ is a first-countable countably compact subspace of ordinals then $C_p(X)$ is Lindelöf. This result is used to construct an example of a countably compact space $X$ such that the extent of $C_p(X)$ is less than the Lindelöf number of $C_p(X)$. This example answers negatively Reznichenko’s question whether Baturov’s theorem holds for countably compact spaces.
LA - eng
KW - $C_p(X)$; space of ordinals; Lindelöf space; ; space of ordinals; Lindelöf space; countably compact space
UR - http://eudml.org/doc/249359
ER -
References
top- Arhangelskii A., Topological Function Spaces, Math. Appl., vol. 78, Kluwer Academic Publisher, Dordrecht, 1992. MR1144519
- Asanov M.O., On cardinal invariants of function spaces, Modern Topology and Set Theory, Igevsk, (2), 1979, 8-12.
- Baturov D., On subspaces of function spaces, Vestnik MGU, Mat. Mech. 4 (1987), 66-69. (1987) Zbl0665.54004MR0913076
- Buzyakova R., Hereditary D-property of Function Spaces Over Compacta, submitted to Proc. Amer. Math. Soc. Zbl1064.54029MR2073321
- van Douwen E.K., Simultaneous extension of continuous functions, Thesis, Free University, Amsterdam, 1975.
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
- Nahmanson L.B., Lindelöfness in function spaces, Fifth Teraspol Symposium on Topology and its Applications, Kishinev, 1985, p.183.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.