Spaces of continuous characteristic functions

Raushan Z. Buzyakova

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 4, page 599-608
  • ISSN: 0010-2628

Abstract

top
We show that if X is first-countable, of countable extent, and a subspace of some ordinal, then C p ( X , 2 ) is Lindelöf.

How to cite

top

Buzyakova, Raushan Z.. "Spaces of continuous characteristic functions." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 599-608. <http://eudml.org/doc/249881>.

@article{Buzyakova2006,
abstract = {We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.},
author = {Buzyakova, Raushan Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space; subspace of ordinals; countable extent; Lindelöf space},
language = {eng},
number = {4},
pages = {599-608},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces of continuous characteristic functions},
url = {http://eudml.org/doc/249881},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Buzyakova, Raushan Z.
TI - Spaces of continuous characteristic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 4
SP - 599
EP - 608
AB - We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.
LA - eng
KW - $C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space; subspace of ordinals; countable extent; Lindelöf space
UR - http://eudml.org/doc/249881
ER -

References

top
  1. Arhangelskii A., Topological Function Spaces, Math. Appl., vol. 78, Kluwer Academic Publisher, Dordrecht, 1992. MR1144519
  2. Arhangelskii A., Some Metrization Theorems (Russian), Uspehi Mat. Nauk 18 5 (113) 139-145 (1963). (1963) MR0156318
  3. Asanov M.O., On cardinal invariants of function spaces, Modern Topology and Set Theory, Igevsk, (2), 1979, pp.8-12. 
  4. Buzyakova R.Z., In search for Lindelöf C p ’s, Comment. Math. Univ. Carolin. 45 (2004), 1 145-151. (2004) Zbl1098.54010MR2076866
  5. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
  6. Nahmanson L.B., Lindelöfness in function spaces, Fifth Teraspol Simposium on Topology and its Applications, Kishinev, 1985, 183. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.