# Spaces of continuous characteristic functions

Commentationes Mathematicae Universitatis Carolinae (2006)

- Volume: 47, Issue: 4, page 599-608
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topBuzyakova, Raushan Z.. "Spaces of continuous characteristic functions." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 599-608. <http://eudml.org/doc/249881>.

@article{Buzyakova2006,

abstract = {We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.},

author = {Buzyakova, Raushan Z.},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {$C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space; subspace of ordinals; countable extent; Lindelöf space},

language = {eng},

number = {4},

pages = {599-608},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Spaces of continuous characteristic functions},

url = {http://eudml.org/doc/249881},

volume = {47},

year = {2006},

}

TY - JOUR

AU - Buzyakova, Raushan Z.

TI - Spaces of continuous characteristic functions

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2006

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 47

IS - 4

SP - 599

EP - 608

AB - We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.

LA - eng

KW - $C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space; subspace of ordinals; countable extent; Lindelöf space

UR - http://eudml.org/doc/249881

ER -

## References

top- Arhangelskii A., Topological Function Spaces, Math. Appl., vol. 78, Kluwer Academic Publisher, Dordrecht, 1992. MR1144519
- Arhangelskii A., Some Metrization Theorems (Russian), Uspehi Mat. Nauk 18 5 (113) 139-145 (1963). (1963) MR0156318
- Asanov M.O., On cardinal invariants of function spaces, Modern Topology and Set Theory, Igevsk, (2), 1979, pp.8-12.
- Buzyakova R.Z., In search for Lindelöf ${C}_{p}$’s, Comment. Math. Univ. Carolin. 45 (2004), 1 145-151. (2004) Zbl1098.54010MR2076866
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
- Nahmanson L.B., Lindelöfness in function spaces, Fifth Teraspol Simposium on Topology and its Applications, Kishinev, 1985, 183.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.