Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0
Laurent Moret-Bailly[1]; Alexandra Shlapentokh[2]
- [1] IRMAR Université de Rennes 1 Campus de Beaulieu 35042 Rennes Cedex (France)
- [2] East Carolina University Department of Mathematics Greenville, NC 27858 (U.S.A.)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 2103-2118
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMoret-Bailly, Laurent, and Shlapentokh, Alexandra. "Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0." Annales de l’institut Fourier 59.5 (2009): 2103-2118. <http://eudml.org/doc/10448>.
@article{Moret2009,
abstract = {Let $K$ be a one-variable function field over a field of constants of characteristic 0. Let $R$ be a holomorphy subring of $K$, not equal to $K$. We prove the following undecidability results for $R$: if $K$ is recursive, then Hilbert’s Tenth Problem is undecidable in $R$. In general, there exist $x_1,\ldots ,x_n \in R$ such that there is no algorithm to tell whether a polynomial equation with coefficients in $\mathbb\{Q\}(x_1,\ldots ,x_n)$ has solutions in $R$.},
affiliation = {IRMAR Université de Rennes 1 Campus de Beaulieu 35042 Rennes Cedex (France); East Carolina University Department of Mathematics Greenville, NC 27858 (U.S.A.)},
author = {Moret-Bailly, Laurent, Shlapentokh, Alexandra},
journal = {Annales de l’institut Fourier},
keywords = {Hilbert’s tenth problem; elliptic curves; Diophantine undecidability; Hilbert's tenth problem; undecidability},
language = {eng},
number = {5},
pages = {2103-2118},
publisher = {Association des Annales de l’institut Fourier},
title = {Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0},
url = {http://eudml.org/doc/10448},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Moret-Bailly, Laurent
AU - Shlapentokh, Alexandra
TI - Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 2103
EP - 2118
AB - Let $K$ be a one-variable function field over a field of constants of characteristic 0. Let $R$ be a holomorphy subring of $K$, not equal to $K$. We prove the following undecidability results for $R$: if $K$ is recursive, then Hilbert’s Tenth Problem is undecidable in $R$. In general, there exist $x_1,\ldots ,x_n \in R$ such that there is no algorithm to tell whether a polynomial equation with coefficients in $\mathbb{Q}(x_1,\ldots ,x_n)$ has solutions in $R$.
LA - eng
KW - Hilbert’s tenth problem; elliptic curves; Diophantine undecidability; Hilbert's tenth problem; undecidability
UR - http://eudml.org/doc/10448
ER -
References
top- J.-L. Colliot-Thélène, A. Skorobogatov, P. Swinnerton-Dyer, Double fibres and double covers: Paucity of rational points, Acta Arithmetica 79 (1997), 113-135 Zbl0863.14011MR1438597
- G. Cornelissen, T. Pheidas, K. Zahidi, Division-ample sets and diophantine problem for rings of integers, Journal de Théorie des Nombres Bordeaux 17 (2005), 727-735 Zbl1161.11323MR2212121
- G. Cornelissen, K. Zahidi, Topology of diophantine sets: Remarks on Mazur’s conjectures, In Jan Denef, Leonard Lipshitz, Thanases Pheidas, and Jan Van Geel, editors Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry, volume 270 of Contemporary Mathematics (2000), 253-260, American Mathematical Society Zbl0982.14014MR1802007
- M. Davis, Hilbert’s tenth problem is unsolvable, American Mathematical Monthly 80 (1973), 233-269 Zbl0277.02008MR317916
- M. Davis, Y. Matiyasevich, J. Robinson, Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution, Proc. Sympos. Pure Math. 28 (1976), 323-378 Zbl0346.02026MR432534
- J. Denef, Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214-220 Zbl0324.02032MR360513
- J. Denef, The diophantine problem for polynomial rings and fields of rational functions, Transactions of American Mathematical Society 242 (1978), 391-399 Zbl0399.10048MR491583
- J. Denef, The diophantine problem for polynomial rings of positive characteristic, (1979), 131-145, In M. Boffa, D. van Dalen, and K. MacAloon, editors, North Holland Zbl0457.12011MR567668
- J. Denef, Diophantine sets of algebraic integers, II, Transactions of American Mathematical Society 257 (1980), 227-236 Zbl0426.12009MR549163
- J. Denef, L. Lipshitz, Diophantine sets over some rings of algebraic integers, Journal of London Mathematical Society 18 (1978), 385-391 Zbl0399.10049MR518221
- J. Denef, L. Lipshitz, T. Pheidas, editors, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry, 270 (2000), American Mathematical Society, Providence, RI Zbl0955.00034MR1802007
- K. Eisenträger, Hilbert’s tenth problem for algebraic function fields of characteristic 2, Pacific J. Math. 210 (2003), 261-281 Zbl1057.11067
- K. Eisenträger, Hilbert’s tenth problem for function fields of varieties over , Int. Math. Res. Not. (2004), 3191-3205 Zbl1109.11061MR2097039
- K. Eisenträger, Hilbert’s Tenth Problem for function fields of varieties over number fields and p-adic fields, Journal of Algebra 310 (2007), 775-792 Zbl1152.11050MR2308179
- M. D. Fried, M. Jarden, Field arithmetic, 11 (2005), Springer Verlag, Berlin, second edition Zbl1055.12003MR2102046
- H. K. Kim, F. W. Roush, Diophantine undecidability of , Journal of Algebra 150 (1992), 35-44 Zbl0754.11039MR1174886
- H. K. Kim, F. W. Roush, Diophantine unsolvability over p-adic function fields, Journal of Algebra 176 (1995), 83-110 Zbl0858.12006MR1345295
- J. Koenigsmann, Defining transcendentals in function fields, J. Symbolic Logic 67 (2002), 947-956 Zbl1015.03041MR1925951
- S. Lang, Algebraic Number Theory, (1970), Addison Wesley, Reading, MA Zbl0211.38404MR282947
- Y. Matiyasevich, Hilbert’s Tenth Problem, (1993), The MIT Press, Cambridge, Massachusetts Zbl0790.03008MR1244324
- B. Mazur, The topology of rational points, Experimental Mathematics 1 (1992), 35-45 Zbl0784.14012MR1181085
- B. Mazur, Questions of decidability and undecidability in number theory, Journal of Symbolic Logic 59 (1994), 353-371 Zbl0814.11059MR1276620
- B. Mazur, Speculation about the topology of rational points: An up-date, Asterisque 228 (1995), 165-181 Zbl0851.14009MR1330932
- B. Mazur, Open problems regarding rational points on curves and varieties, (1998), Cambridge University Press Zbl0943.14009MR1696485
- L. Moret-Bailly, Elliptic curves and Hilbert’s Tenth Problem for algebraic function fields over real and -adic fields, Journal für die reine und angewandte Mathematik 587 (2006), 77-143 Zbl1085.14029MR2186976
- T. Pheidas, Hilbert’s tenth problem for a class of rings of algebraic integers, Proceedings of American Mathematical Society 104 (1988), 611-620 Zbl0697.12020MR962837
- T. Pheidas, Hilbert’s tenth problem for fields of rational functions over finite fields, Inventiones Mathematicae 103 (1991), 1-8 Zbl0696.12022MR1079837
- T. Pheidas, Endomorphisms of elliptic curves and undecidability in function fields of positive characteristic, J. Algebra 273 (2004), 395-411 Zbl1035.11064MR2032468
- B. Poonen, Hilbert’s Tenth Problem and Mazur’s conjecture for large subrings of , Journal of AMS 16 (2003), 981-990 Zbl1028.11077MR1992832
- B. Poonen, A. Shlapentokh, Diophantine definability of infinite discrete non-archimedean sets and diophantine models for large subrings of number fields, Journal für die Reine und Angewandte Mathematik (2005), 27-48 Zbl1139.11056MR2196727
- Florian Pop, Elementary equivalence versus isomorphism, Invent. Math. 150 (2002), 385-408 Zbl1162.12302MR1933588
- H. Shapiro, A. Shlapentokh, Diophantine relations between algebraic number fields, Communications on Pure and Applied Mathematics XLII (1989), 1113-1122 Zbl0698.12022MR1029120
- A. Shlapentokh, Extension of Hilbert’s tenth problem to some algebraic number fields, Communications on Pure and Applied Mathematics XLII (1989), 939-962 Zbl0695.12020MR1008797
- A. Shlapentokh, Hilbert’s tenth problem for rings of algebraic functions of characteristic , J. Number Theory 40 (1992), 218-236 Zbl0746.03008MR1149739
- A. Shlapentokh, Diophantine classes of holomorphy rings of global fields, Journal of Algebra 169 (1994), 39-175 Zbl0810.11073MR1296586
- A. Shlapentokh, Diophantine undecidability for some holomorphy rings of algebraic functions of characteristic 0, Communications in Algebra 22 (1994), 4379-4404 Zbl0810.11074MR1284336
- A. Shlapentokh, Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of , Annals of Pure and Applied Logic 68 (1994), 299-325 Zbl0816.11066MR1289287
- A. Shlapentokh, Diophantine undecidability of algebraic function fields over finite fields of constants, Journal of Number Theory 58 (1996), 317-342 Zbl0856.11058MR1393619
- A. Shlapentokh, Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator, Inventiones Mathematicae 129 (1997), 489-507 Zbl0887.11053MR1465332
- A. Shlapentokh, Diophantine undecidability of function fields of characteristic greater than 2 finitely generated over a field algebraic over a finite field, Compositio Mathematica 132 (2002), 99-120 Zbl1011.03026MR1914257
- A. Shlapentokh, On diophantine decidability and definability in some rings of algebraic functions of characteristic 0, Journal of Symbolic Logic 67 (2002), 759-786 Zbl1011.03027MR1905166
- A. Shlapentokh, On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2, Journal of Number Theory 95 (2002), 227-252 Zbl1082.11079MR1924099
- A. Shlapentokh, A ring version of Mazur’s conjecture on topology of rational points, International Mathematics Research Notices 7 (2003), 411-423 Zbl1107.11049MR1939572
- A. Shlapentokh, On diophantine definability and decidability in some infinite totally real extensions of , Transactions of AMS 356 (2004), 3189-3207 Zbl1052.11082MR2052946
- A. Shlapentokh, First-order definitions of rational functions and -integers over holomorphy rings of algebraic functions of characteristic 0, Ann. Pure Appl. Logic 136 (2005), 267-283 Zbl1079.03025MR2169686
- A. Shlapentokh, Hilbert’s Tenth Problem: Diophantine Classes and Extensions to Global Fields, (2006), Cambridge University Press Zbl1196.11166MR2297245
- A. Shlyapentokh, Diophantine undecidability for some function fields of infinite transcendence degree and positive characteristic, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 304 (2003), 141-167, 171 Zbl1140.11356MR2054753
- C. Videla, Hilbert’s tenth problem for rational function fields in characteristic 2, Proceedings of the American Mathematical Society 120 (1994), 249-253 Zbl0795.03015MR1159179
- K. Zahidi, The existential theory of real hyperelliptic fields, Journal of Algebra 233 (2000), 65-86 Zbl0985.11062MR1793590
- K. Zahidi, Hilbert’s tenth problem for rings of rational functions, Notre Dame Journal of Formal Logic 43 (2003), 181-192 Zbl1062.03019MR2034745
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.