Sur la dimension cohomologique des pro--extensions des corps de nombres
- [1] GRIMM Université Toulouse le Mirail 5, allées A. Machado 31058 Toulouse cédex
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 2, page 575-606
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMaire, Christian. "Sur la dimension cohomologique des pro-$p$-extensions des corps de nombres." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 575-606. <http://eudml.org/doc/249422>.
@article{Maire2005,
abstract = {In this paper, we study the cohomological dimension of groups $G_S:=\operatorname\{Gal\}(\mathbb\{K\}_S/\mathbb\{K\})$, where $\mathbb\{K\}_S$ is the maximal pro-$p$-extension of a number field $\mathbb\{K\}$, unramified outside a finite set $S$ of places of $\mathbb\{K\}$. This dimension is well-understood only when $S$ contains all places above $p$; in the case where only some of the places above $p$ are contained in $S$, one can still obtain some results if $\mathbb\{K\}_S/\mathbb\{K\}$ contains at least one $\mathbb\{Z\}_p$-extension $\mathbb\{K\}_\infty /\mathbb\{K\}$. Indeed, in that case, the study of the $\mathbb\{Z\}_p[[\operatorname\{Gal\}(\mathbb\{K\}_\infty /\mathbb\{K\})]]$-module $\operatorname\{Gal\}(\mathbb\{K\}_S/\mathbb\{K\}_\infty )^\{ab\}$ allows one to give sufficient conditions for the pro-$p$-group $\operatorname\{Gal\}(\mathbb\{K\}_S/\mathbb\{K\}_\infty )$ to be free. Under the latter condition, the dimension of $G_S$ is at most 2. Here, we develop an explicit strategy for realizing these conditions so as to produce numerical examples for which we effectively compute this cohomological dimension.},
affiliation = {GRIMM Université Toulouse le Mirail 5, allées A. Machado 31058 Toulouse cédex},
author = {Maire, Christian},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {conditions of Leopoldt type; Spiegelungssatz; -extensions; Gras logarithm},
language = {eng},
number = {2},
pages = {575-606},
publisher = {Université Bordeaux 1},
title = {Sur la dimension cohomologique des pro-$p$-extensions des corps de nombres},
url = {http://eudml.org/doc/249422},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Maire, Christian
TI - Sur la dimension cohomologique des pro-$p$-extensions des corps de nombres
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 575
EP - 606
AB - In this paper, we study the cohomological dimension of groups $G_S:=\operatorname{Gal}(\mathbb{K}_S/\mathbb{K})$, where $\mathbb{K}_S$ is the maximal pro-$p$-extension of a number field $\mathbb{K}$, unramified outside a finite set $S$ of places of $\mathbb{K}$. This dimension is well-understood only when $S$ contains all places above $p$; in the case where only some of the places above $p$ are contained in $S$, one can still obtain some results if $\mathbb{K}_S/\mathbb{K}$ contains at least one $\mathbb{Z}_p$-extension $\mathbb{K}_\infty /\mathbb{K}$. Indeed, in that case, the study of the $\mathbb{Z}_p[[\operatorname{Gal}(\mathbb{K}_\infty /\mathbb{K})]]$-module $\operatorname{Gal}(\mathbb{K}_S/\mathbb{K}_\infty )^{ab}$ allows one to give sufficient conditions for the pro-$p$-group $\operatorname{Gal}(\mathbb{K}_S/\mathbb{K}_\infty )$ to be free. Under the latter condition, the dimension of $G_S$ is at most 2. Here, we develop an explicit strategy for realizing these conditions so as to produce numerical examples for which we effectively compute this cohomological dimension.
LA - eng
KW - conditions of Leopoldt type; Spiegelungssatz; -extensions; Gras logarithm
UR - http://eudml.org/doc/249422
ER -
References
top- C. Batut, K. Belabas, H. Cohen, M. Olivier, User’s guide to PARI-GP. A2X, Université Bordeaux I, 1999.
- N. Boston, Explicit Galois groups of infinite -extensions unramified outside , preprint 2003.
- N. Boston, Some cases of the Fontaine-Mazur conjecture. Journal of Number Theory 42 (1992), 285–291. Zbl0768.11044MR1189506
- N. Boston, Some cases of the Fontaine-Mazur conjecture II. Journal of Number Theory 75 (1999), 161–169. Zbl0928.11050MR1681626
- J.-M. Fontaine, B. Mazur, Geometric Galois representations. Elliptic curves, modular forms and Fermat’s last theorem, Internat. Press, Cambridge, MA, 1995. Zbl0839.14011
- R. Gillard, Fonctions -adiques des corps quadratiques imaginaires et de leurs extensions abéliennes. Crelle 358 (1985), 76–91. Zbl0551.12011MR797675
- G. Gras, Class Field Theory. SMM, Springer 2003. Zbl1019.11032MR1941965
- G. Gras, Groupe de Galois de la -extension abélienne -ramifiée maximale d’un corps de nombres. Crelle 333 (1982), 86–132. Zbl0477.12009
- G. Gras, Plongements kummériens dans les -extensions. Compositio Math. 55 (1985), 383–396. Zbl0584.12004MR799822
- G. Gras, J.-F. Jaulent, Sur les corps de nombres réguliers. Math. Z. 202 (1989), 343–365. Zbl0704.11040MR1017575
- K. Haberland, Galois cohomology of algebraic number fields, With two appendices by Helmut Koch and Thomas Zink. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. Zbl0418.12004MR519872
- F. Hajir, C. Maire, Extensions of number fields with ramification of bounded depth. International Math. Research Notices 13 (2002), 667–696. Zbl1160.11358MR1890847
- H. Hasse, Number Theory. Classics in Mathematics, Springer, 1980. Zbl0991.11001MR562104
- J.-F. Jaulent, L’arithmétique des -extensions. Publications Math. de Besançon, 1986. Zbl0601.12002
- J.-F. Jaulent, C. Maire, Sur les invariants d’Iwasawa des tours cyclotomiques. Canadian Math. Bulletin 46 (2003), 178–190. Zbl1155.11353
- J.-F. Jaulent, T. Nguyen Quang Do, Corps -rationnels, corps réguliers et ramification restreinte. J. Théorie des Nombres de Bordeaux 5 (1993), 343–363. Zbl0957.11046MR1265910
- J.-F. Jaulent, O. Sauzet, Pro--extensions de corps de nombres -rationnels. Jour. Number Theory 65 (1997), 240–267. Zbl0896.11043MR1462840
- H. Koch, Galoissche Theorie der -Erweiterungen. VEB, Berlin, 1970. Zbl0216.04704MR291139
- J. Labute, Mild pro--groups and Galois groups of -extensions of . J. Reine Angew. Math., à paraître. Zbl1122.11076
- C. Maire, On the -rank of abelian extensions with restricted ramification. Journal of Number Theory 92 (2002), 376–404. Zbl1026.11084MR1884709
- A. Movahhedi, Sur les -extensions des corps -rationnels. Math. Nach. 149 (1990), 163–176. Zbl0723.11054MR1124802
- A. Movahhedi, T. Nguyen Quang Do, Sur l’arithmétique des corps de nombres -rationnels. Sém. Théorie des Nombres, Paris (1987/89), Prog. Math 81, 155–200. Zbl0703.11059
- J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields. Grundlehren 323, Springer-Verlag 2002. Zbl0948.11001MR1737196
- T. Nguyen Quang Do, Formations de classes et modules d’Iwasawa. Number Theory, Noordwijkerhout 1983, Lecture Notes in Math. 1068, 167–185. Zbl0543.12007
- A. Schmidt, On the relation between and in Galois Cohomology of Number Fields. Compositio Math. 133 (2002), 267–288. Zbl1021.11029MR1930978
- A. Schmidt, Circular sets of prime numbers and -extensions of the rationals, preprint, 2005. MR2254808
- A. Schmidt, Bounded defect in partial Euler characteristics. Bull. London Math. Soc. 28 (1996), 463–464. Zbl0866.20019MR1396144
- L. Schneps, On the -invariant of -adic -functions attached to elliptic curves with complex multiplication. Journal of Number Theory 25 (1987), 20–33. Zbl0615.12018MR871166
- J.-P. Serre, Galois Cohomology. Lecture Notes in Math., Springer-Verlag, Berlin, 1994. Zbl1004.12003MR1324577
- J.-P. Serre, Corps locaux. Publications de l’Université de Nancago, Hermann, Paris, 1968. Zbl0423.12017
- L.C. Washington, Introduction to cyclotomic fields. GTM 83, Springer 1997. Zbl0966.11047MR1421575
- K. Wingberg, Galois groups of number fields generated by torsion points of elliptic curves. Nagoya Math. J 104 (1986), 43–53. Zbl0621.12011MR868436
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.