Ramification groups in Artin-Schreier-Witt extensions
Lara Thomas[1]
- [1] Equipe GRIMM Université Toulouse II 5, allées A. Machado 31058 Toulouse, France Chaire de Structures Algébriques et Géométriques Ecole Polytechnique Fédérale de Lausanne SB - IMB (Bâtiment MA) Station 8 CH-1015 Lausanne
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 2, page 689-720
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topThomas, Lara. "Ramification groups in Artin-Schreier-Witt extensions." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 689-720. <http://eudml.org/doc/249428>.
@article{Thomas2005,
abstract = {Let $K$ be a local field of characteristic $p>0$. The aim of this paper is to describe the ramification groups for the pro-$p$ abelian extensions over $K$ with regards to the Artin-Schreier-Witt theory. We shall carry out this investigation entirely in the usual framework of local class field theory. This leads to a certain non-degenerate pairing that we shall define in detail, generalizing in this way the Schmid formula to Witt vectors of length $n$. Along the way, we recover a result of Brylinski but with a different proof which is more explicit and requires less technical machinery. A first attempt is finally made to extend these computations to the case where the perfect field of $K$ is merely perfect.},
affiliation = {Equipe GRIMM Université Toulouse II 5, allées A. Machado 31058 Toulouse, France Chaire de Structures Algébriques et Géométriques Ecole Polytechnique Fédérale de Lausanne SB - IMB (Bâtiment MA) Station 8 CH-1015 Lausanne},
author = {Thomas, Lara},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ramification groups for pro- abelian extensions},
language = {eng},
number = {2},
pages = {689-720},
publisher = {Université Bordeaux 1},
title = {Ramification groups in Artin-Schreier-Witt extensions},
url = {http://eudml.org/doc/249428},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Thomas, Lara
TI - Ramification groups in Artin-Schreier-Witt extensions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 689
EP - 720
AB - Let $K$ be a local field of characteristic $p>0$. The aim of this paper is to describe the ramification groups for the pro-$p$ abelian extensions over $K$ with regards to the Artin-Schreier-Witt theory. We shall carry out this investigation entirely in the usual framework of local class field theory. This leads to a certain non-degenerate pairing that we shall define in detail, generalizing in this way the Schmid formula to Witt vectors of length $n$. Along the way, we recover a result of Brylinski but with a different proof which is more explicit and requires less technical machinery. A first attempt is finally made to extend these computations to the case where the perfect field of $K$ is merely perfect.
LA - eng
KW - ramification groups for pro- abelian extensions
UR - http://eudml.org/doc/249428
ER -
References
top- E. Artin, O.Schreier, Eine Kennzeichnung der reell algeschlossenen Körper. Abh. Math. Sem. Hamburg 5 (1927), 225–231.
- J.-L. Brylinski, Théorie du corps de classes de Kato et revêtements abéliens de surfaces. Ann. Inst. Fourier, 33.3, Grenoble (1983), 23–38. Zbl0524.12008MR723946
- I.B. Fesenko, S.V. Vostokov, Local Fields and Their Extensions. Translation of Mathematical Monographs 121, Amer. Math. Soc. (1993). Zbl0781.11042MR1218392
- M. Garuti, Linear sytems attached to cyclic inertia. (Berkeley, CA, 1999), 377–386, Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI (2002). Zbl1072.14017MR1935414
- H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper. J. Reine Angew. Math. 172 (1934), 37–54. Zbl0010.00501
- M. Hazewinkel, Abelian extensions of local fields, Ph.D. thesis. Universiteit Nijmegen, Holland (1969). Zbl0193.35001MR248110
- E. Maus, Die Gruppentheoretische Struktur der Verzweigungsgruppenreihen. J. Reine. Angew. Math. 230 (1968), 1–28. Zbl0165.35703MR225763
- L. Ribes, P. Zalesskii, Profinite groups. A series of Modern Surveys in Mathematics, Volume 40, Springer (2000). Zbl0949.20017MR1775104
- P. Roquette, Class Field Theory in characteristic . Its origin and development. K. Miyake (ed.), Class Field Theory- Its Centenary and Prospect, Advanced Studies In Pure Mathematics, vol. 30, Tokyo (2000), 549–631. Zbl1068.11073MR1846477
- H.L. Schmid, Über das Reziprozitätsgezsetz in relativ-zyklischen algebraischen Funktionkörpern mit endlichem Konstantenkörper. Math. Z. 40 (1936), no. 1, 94–109. Zbl0011.14604MR1545545
- H.L. Schmid, Zyklischen algebraische Funktionkörper vom Grade über endlichem Konstantenkörper der Charakteristik . J. Reine Angew. Math. 175, (1936), 108–123. Zbl0014.00402
- H.L. Schmid, Zur Arithmetik der zyklischen -Körper. J. Reine Angew. Math. 176 (1937), 161–167 Zbl0016.05205
- J.-P. Serre, Corps Locaux. Hermann, Paris (1962). [English translation : Local Fields. Graduate Texts in Math. 67, Springer, New York (1979)]. Zbl0137.02601MR150130
- S.S. Shatz, Profinite groups, arithmetic and geometry. Princeton university press and university of Tokyo press (1972). Zbl0236.12002MR347778
- O. Teichmüller, Zerfallende zyklische -Algebren. J. Reine Angew. Math., 174 (1936), 157–160. Zbl0016.05201
- L. Thomas, Arithmétique des extensions d’Artin-Schreier-Witt, Ph.D. (2005). Université Toulouse II Le Mirail.
- E. Witt, Zyklische Körper und Algebren der Charakteristik vom Grad . J. Reine Angew. Math., 174 (1936), 126–140. Zbl0016.05101
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.