Ramification groups in Artin-Schreier-Witt extensions

Lara Thomas[1]

  • [1] Equipe GRIMM Université Toulouse II 5, allées A. Machado 31058 Toulouse, France Chaire de Structures Algébriques et Géométriques Ecole Polytechnique Fédérale de Lausanne SB - IMB (Bâtiment MA) Station 8 CH-1015 Lausanne

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 2, page 689-720
  • ISSN: 1246-7405

Abstract

top
Let K be a local field of characteristic p > 0 . The aim of this paper is to describe the ramification groups for the pro- p abelian extensions over K with regards to the Artin-Schreier-Witt theory. We shall carry out this investigation entirely in the usual framework of local class field theory. This leads to a certain non-degenerate pairing that we shall define in detail, generalizing in this way the Schmid formula to Witt vectors of length n . Along the way, we recover a result of Brylinski but with a different proof which is more explicit and requires less technical machinery. A first attempt is finally made to extend these computations to the case where the perfect field of K is merely perfect.

How to cite

top

Thomas, Lara. "Ramification groups in Artin-Schreier-Witt extensions." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 689-720. <http://eudml.org/doc/249428>.

@article{Thomas2005,
abstract = {Let $K$ be a local field of characteristic $p&gt;0$. The aim of this paper is to describe the ramification groups for the pro-$p$ abelian extensions over $K$ with regards to the Artin-Schreier-Witt theory. We shall carry out this investigation entirely in the usual framework of local class field theory. This leads to a certain non-degenerate pairing that we shall define in detail, generalizing in this way the Schmid formula to Witt vectors of length $n$. Along the way, we recover a result of Brylinski but with a different proof which is more explicit and requires less technical machinery. A first attempt is finally made to extend these computations to the case where the perfect field of $K$ is merely perfect.},
affiliation = {Equipe GRIMM Université Toulouse II 5, allées A. Machado 31058 Toulouse, France Chaire de Structures Algébriques et Géométriques Ecole Polytechnique Fédérale de Lausanne SB - IMB (Bâtiment MA) Station 8 CH-1015 Lausanne},
author = {Thomas, Lara},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ramification groups for pro- abelian extensions},
language = {eng},
number = {2},
pages = {689-720},
publisher = {Université Bordeaux 1},
title = {Ramification groups in Artin-Schreier-Witt extensions},
url = {http://eudml.org/doc/249428},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Thomas, Lara
TI - Ramification groups in Artin-Schreier-Witt extensions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 689
EP - 720
AB - Let $K$ be a local field of characteristic $p&gt;0$. The aim of this paper is to describe the ramification groups for the pro-$p$ abelian extensions over $K$ with regards to the Artin-Schreier-Witt theory. We shall carry out this investigation entirely in the usual framework of local class field theory. This leads to a certain non-degenerate pairing that we shall define in detail, generalizing in this way the Schmid formula to Witt vectors of length $n$. Along the way, we recover a result of Brylinski but with a different proof which is more explicit and requires less technical machinery. A first attempt is finally made to extend these computations to the case where the perfect field of $K$ is merely perfect.
LA - eng
KW - ramification groups for pro- abelian extensions
UR - http://eudml.org/doc/249428
ER -

References

top
  1. E. Artin, O.Schreier, Eine Kennzeichnung der reell algeschlossenen Körper. Abh. Math. Sem. Hamburg 5 (1927), 225–231. 
  2. J.-L. Brylinski, Théorie du corps de classes de Kato et revêtements abéliens de surfaces. Ann. Inst. Fourier, 33.3, Grenoble (1983), 23–38. Zbl0524.12008MR723946
  3. I.B. Fesenko, S.V. Vostokov, Local Fields and Their Extensions. Translation of Mathematical Monographs 121, Amer. Math. Soc. (1993). Zbl0781.11042MR1218392
  4. M. Garuti, Linear sytems attached to cyclic inertia. (Berkeley, CA, 1999), 377–386, Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI (2002). Zbl1072.14017MR1935414
  5. H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper. J. Reine Angew. Math. 172 (1934), 37–54. Zbl0010.00501
  6. M. Hazewinkel, Abelian extensions of local fields, Ph.D. thesis. Universiteit Nijmegen, Holland (1969). Zbl0193.35001MR248110
  7. E. Maus, Die Gruppentheoretische Struktur der Verzweigungsgruppenreihen. J. Reine. Angew. Math. 230 (1968), 1–28. Zbl0165.35703MR225763
  8. L. Ribes, P. Zalesskii, Profinite groups. A series of Modern Surveys in Mathematics, Volume 40, Springer (2000). Zbl0949.20017MR1775104
  9. P. Roquette, Class Field Theory in characteristic p . Its origin and development. K. Miyake (ed.), Class Field Theory- Its Centenary and Prospect, Advanced Studies In Pure Mathematics, vol. 30, Tokyo (2000), 549–631. Zbl1068.11073MR1846477
  10. H.L. Schmid, Über das Reziprozitätsgezsetz in relativ-zyklischen algebraischen Funktionkörpern mit endlichem Konstantenkörper. Math. Z. 40 (1936), no. 1, 94–109. Zbl0011.14604MR1545545
  11. H.L. Schmid, Zyklischen algebraische Funktionkörper vom Grade p n über endlichem Konstantenkörper der Charakteristik p . J. Reine Angew. Math. 175, (1936), 108–123. Zbl0014.00402
  12. H.L. Schmid, Zur Arithmetik der zyklischen p -Körper. J. Reine Angew. Math. 176 (1937), 161–167 Zbl0016.05205
  13. J.-P. Serre, Corps Locaux. Hermann, Paris (1962). [English translation : Local Fields. Graduate Texts in Math. 67, Springer, New York (1979)]. Zbl0137.02601MR150130
  14. S.S. Shatz, Profinite groups, arithmetic and geometry. Princeton university press and university of Tokyo press (1972). Zbl0236.12002MR347778
  15. O. Teichmüller, Zerfallende zyklische p -Algebren. J. Reine Angew. Math., 174 (1936), 157–160. Zbl0016.05201
  16. L. Thomas, Arithmétique des extensions d’Artin-Schreier-Witt, Ph.D. (2005). Université Toulouse II Le Mirail. 
  17. E. Witt, Zyklische Körper und Algebren der Charakteristik vom Grad p n . J. Reine Angew. Math., 174 (1936), 126–140. Zbl0016.05101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.