On the computation of Hermite-Humbert constants for real quadratic number fields
Michael E. Pohst[1]; Marcus Wagner[1]
- [1] Technische Universität Berlin Fakultät II Institut für Mathematik MA 8-1 Str. d. 17. Juni 136 D-10623 Berlin, Germany
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 905-920
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPohst, Michael E., and Wagner, Marcus. "On the computation of Hermite-Humbert constants for real quadratic number fields." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 905-920. <http://eudml.org/doc/249433>.
@article{Pohst2005,
	abstract = {We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields $\mathbb\{Q\}(\sqrt\{13\})$ and $\mathbb\{Q\}(\sqrt\{17\})$. Finally we compute the Hermite-Humbert constant for the number field $\mathbb\{Q\}(\sqrt\{13\})$.},
	affiliation = {Technische Universität Berlin  Fakultät II  Institut für Mathematik MA 8-1  Str. d. 17. Juni 136 D-10623 Berlin, Germany; Technische Universität Berlin  Fakultät II  Institut für Mathematik MA 8-1  Str. d. 17. Juni 136 D-10623 Berlin, Germany},
	author = {Pohst, Michael E., Wagner, Marcus},
	journal = {Journal de Théorie des Nombres de Bordeaux},
	keywords = {Algebraic number theory computations; quadratic extensions},
	language = {eng},
	number = {3},
	pages = {905-920},
	publisher = {Université Bordeaux 1},
	title = {On the computation of Hermite-Humbert constants for real quadratic number fields},
	url = {http://eudml.org/doc/249433},
	volume = {17},
	year = {2005},
}
TY  - JOUR
AU  - Pohst, Michael E.
AU  - Wagner, Marcus
TI  - On the computation of Hermite-Humbert constants for real quadratic number fields
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
PB  - Université Bordeaux 1
VL  - 17
IS  - 3
SP  - 905
EP  - 920
AB  - We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields $\mathbb{Q}(\sqrt{13})$ and $\mathbb{Q}(\sqrt{17})$. Finally we compute the Hermite-Humbert constant for the number field $\mathbb{Q}(\sqrt{13})$.
LA  - eng
KW  - Algebraic number theory computations; quadratic extensions
UR  - http://eudml.org/doc/249433
ER  - 
References
top- R. Baeza, R. Coulangeon, M.I. Icaza, M. O’ Ryan, Hermite’s constant for quadratic number fields. Experimental Mathematics 10 (2001), 543–551. Zbl1042.11045MR1881755
- R. Coulangeon, Voronoï theory over algebraic number fields. Monographies de l’Enseignement Mathématique 37 (2001), 147–162. Zbl1139.11321MR1878749
- H. Cohn, A numerical survey of the floors of various Hilbert fundamental domains. Math. Comp. 19 (1965), 594–605. Zbl0144.28501MR195818
- H. Cohn, On the shape of the fundamental domain of the Hilbert modular group. Proc. Symp. Pure Math. 8 (1965), 190–202. Zbl0137.05702MR174528
- P. Humbert, Théorie de la réduction des formes quadratique définies positives dans un corps algébrique K fini. Comment. Math. Helv. 12 (1940), 263–306. Zbl0023.19905MR3002
- M.I. Icaza, Hermite constant and extreme forms for algebraic number fields. J. London Math. Soc. 55 (1997), 11–22. Zbl0874.11047MR1423282
- M.E. Pohst et al, The computer algebra system KASH/KANT, TU Berlin 2000, http://www.math.tu-berlin.de/~kant/
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 