On the computation of Hermite-Humbert constants for real quadratic number fields

Michael E. Pohst[1]; Marcus Wagner[1]

  • [1] Technische Universität Berlin Fakultät II Institut für Mathematik MA 8-1 Str. d. 17. Juni 136 D-10623 Berlin, Germany

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 3, page 905-920
  • ISSN: 1246-7405

Abstract

top
We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields ( 13 ) and ( 17 ) . Finally we compute the Hermite-Humbert constant for the number field ( 13 ) .

How to cite

top

Pohst, Michael E., and Wagner, Marcus. "On the computation of Hermite-Humbert constants for real quadratic number fields." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 905-920. <http://eudml.org/doc/249433>.

@article{Pohst2005,
abstract = {We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields $\mathbb\{Q\}(\sqrt\{13\})$ and $\mathbb\{Q\}(\sqrt\{17\})$. Finally we compute the Hermite-Humbert constant for the number field $\mathbb\{Q\}(\sqrt\{13\})$.},
affiliation = {Technische Universität Berlin Fakultät II Institut für Mathematik MA 8-1 Str. d. 17. Juni 136 D-10623 Berlin, Germany; Technische Universität Berlin Fakultät II Institut für Mathematik MA 8-1 Str. d. 17. Juni 136 D-10623 Berlin, Germany},
author = {Pohst, Michael E., Wagner, Marcus},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Algebraic number theory computations; quadratic extensions},
language = {eng},
number = {3},
pages = {905-920},
publisher = {Université Bordeaux 1},
title = {On the computation of Hermite-Humbert constants for real quadratic number fields},
url = {http://eudml.org/doc/249433},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Pohst, Michael E.
AU - Wagner, Marcus
TI - On the computation of Hermite-Humbert constants for real quadratic number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 905
EP - 920
AB - We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields $\mathbb{Q}(\sqrt{13})$ and $\mathbb{Q}(\sqrt{17})$. Finally we compute the Hermite-Humbert constant for the number field $\mathbb{Q}(\sqrt{13})$.
LA - eng
KW - Algebraic number theory computations; quadratic extensions
UR - http://eudml.org/doc/249433
ER -

References

top
  1. R. Baeza, R. Coulangeon, M.I. Icaza, M. O’ Ryan, Hermite’s constant for quadratic number fields. Experimental Mathematics 10 (2001), 543–551. Zbl1042.11045MR1881755
  2. R. Coulangeon, Voronoï theory over algebraic number fields. Monographies de l’Enseignement Mathématique 37 (2001), 147–162. Zbl1139.11321MR1878749
  3. H. Cohn, A numerical survey of the floors of various Hilbert fundamental domains. Math. Comp. 19 (1965), 594–605. Zbl0144.28501MR195818
  4. H. Cohn, On the shape of the fundamental domain of the Hilbert modular group. Proc. Symp. Pure Math. 8 (1965), 190–202. Zbl0137.05702MR174528
  5. P. Humbert, Théorie de la réduction des formes quadratique définies positives dans un corps algébrique K fini. Comment. Math. Helv. 12 (1940), 263–306. Zbl0023.19905MR3002
  6. M.I. Icaza, Hermite constant and extreme forms for algebraic number fields. J. London Math. Soc. 55 (1997), 11–22. Zbl0874.11047MR1423282
  7. M.E. Pohst et al, The computer algebra system KASH/KANT, TU Berlin 2000, http://www.math.tu-berlin.de/~kant/ 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.