Displaying similar documents to “On the ring of p -integers of a cyclic p -extension over a number field”

Making sense of capitulation: reciprocal primes

David Folk (2016)

Acta Arithmetica

Similarity:

Let ℓ be a rational prime, K be a number field that contains a primitive ℓth root of unity, L an abelian extension of K whose degree over K, [L:K], is divisible by ℓ, a prime ideal of K whose ideal class has order ℓ in the ideal class group of K, and a any generator of the principal ideal . We will call a prime ideal of K ’reciprocal to ’ if its Frobenius element generates G a l ( K ( a ) / K ) for every choice of a . We then show that becomes principal in L if and only if every reciprocal prime is not...

Eigenspaces of the ideal class group

Cornelius Greither, Radan Kučera (2014)

Annales de l’institut Fourier

Similarity:

The aim of this paper is to prove an analog of Gras’ conjecture for an abelian field F and an odd prime p dividing the degree [ F : ] assuming that the p -part of Gal ( F / ) group is cyclic.

Ramification in quartic cyclic number fields K generated by x 4 + p x 2 + p

Julio Pérez-Hernández, Mario Pineda-Ruelas (2021)

Mathematica Bohemica

Similarity:

If K is the splitting field of the polynomial f ( x ) = x 4 + p x 2 + p and p is a rational prime of the form 4 + n 2 , we give appropriate generators of K to obtain the explicit factorization of the ideal q 𝒪 K , where q is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.

Wild primes of a self-equivalence of a number field

Alfred Czogała, Beata Rothkegel (2014)

Acta Arithmetica

Similarity:

Let K be a number field. Assume that the 2-rank of the ideal class group of K is equal to the 2-rank of the narrow ideal class group of K. Moreover, assume K has a unique dyadic prime and the class of is a square in the ideal class group of K. We prove that if ₁,...,ₙ are finite primes of K such that ∙ the class of i is a square in the ideal class group of K for every i ∈ 1,...,n, ∙ -1 is a local square at i for every nondyadic i , . . . , , then ₁,...,ₙ is the wild set of some self-equivalence...

On skew derivations as homomorphisms or anti-homomorphisms

Mohd Arif Raza, Nadeem ur Rehman, Shuliang Huang (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a prime ring with center Z and I be a nonzero ideal of R . In this manuscript, we investigate the action of skew derivation ( δ , ϕ ) of R which acts as a homomorphism or an anti-homomorphism on I . Moreover, we provide an example for semiprime case.

On relative pure cyclic fields with power integral bases

Mohammed Sahmoudi, Mohammed Elhassani Charkani (2023)

Mathematica Bohemica

Similarity:

Let L = K ( α ) be an extension of a number field K , where α satisfies the monic irreducible polynomial P ( X ) = X p - β of prime degree belonging to 𝔬 K [ X ] ( 𝔬 K is the ring of integers of K ). The purpose of this paper is to study the monogenity of L over K by a simple and practical version of Dedekind’s criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field...

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

Similarity:

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results....

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...