Geometry of numbers in adele spaces

R. B. McFeat

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1971

Abstract

top
CONTENTSPart I1. Introduction...................................................................................................................................................... 52. Preliminaries.................................................................................................................................................. 62.1. Notation........................................................................................................................................................ 62.2. Local preliminaries.................................................................................................................................... 63. The space 𝒜 ............................................................................................................................. 93.1. Generalities................................................................................................................................................. 93.2. Linear transformations of 𝒜 ............................................................................................... 103.3. Global measure.......................................................................................................................................... 114. Lattices and convex bodies.......................................................................................................................... 114.1. Lattices......................................................................................................................................................... 114.2. Convex bodies............................................................................................................................................. 135. An analogue of Minkowski’s convex body theorem................................................................................. 155.1. Convex body theorem................................................................................................................................ 155.2. Applications of theorem 2......................................................................................................................... 166. Successive minima....................................................................................................................................... 186.1. Preliminaries............................................................................................................................................... 186.2. The product of successive minima; an upper bound.......................................................................... 196.3. The product of successive minima; a lower bound............................................................................ 226.4. Applications to algebraic number theory................................................................................................ 247. T-adeles........................................................................................................................................................... 327.1. The general theory for T-adeles............................................................................................................... 327.2. Two special cases..................................................................................................................................... 35Part II1. Introduction ..................................................................................................................................................... 372. Topology in 𝒢 ................................................................................................................... 372.1. Two topologies on 𝒢 ........................................................................................................... 372.2. Comparison of the two topologies.......................................................................................................... 393. Compactness for lattices............................................................................................................................. 413.1. Two topologies on the lattice space....................................................................................................... 413.2. An important lemma................................................................................................................................... 433.3. An analogue of Mahler’s compactness theorem................................................................................. 444. The Chabauty topology................................................................................................................................. 455. T-adeles ......................................................................................................................................................... 47References.......................................................................................................................................................... 49

How to cite

top

R. B. McFeat. Geometry of numbers in adele spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1971. <http://eudml.org/doc/268414>.

@book{R1971,
abstract = {CONTENTSPart I1. Introduction...................................................................................................................................................... 52. Preliminaries.................................................................................................................................................. 62.1. Notation........................................................................................................................................................ 62.2. Local preliminaries.................................................................................................................................... 63. The space $\mathcal \{A\}$............................................................................................................................. 93.1. Generalities................................................................................................................................................. 93.2. Linear transformations of $\mathcal \{A\}$............................................................................................... 103.3. Global measure.......................................................................................................................................... 114. Lattices and convex bodies.......................................................................................................................... 114.1. Lattices......................................................................................................................................................... 114.2. Convex bodies............................................................................................................................................. 135. An analogue of Minkowski’s convex body theorem................................................................................. 155.1. Convex body theorem................................................................................................................................ 155.2. Applications of theorem 2......................................................................................................................... 166. Successive minima....................................................................................................................................... 186.1. Preliminaries............................................................................................................................................... 186.2. The product of successive minima; an upper bound.......................................................................... 196.3. The product of successive minima; a lower bound............................................................................ 226.4. Applications to algebraic number theory................................................................................................ 247. T-adeles........................................................................................................................................................... 327.1. The general theory for T-adeles............................................................................................................... 327.2. Two special cases..................................................................................................................................... 35Part II1. Introduction ..................................................................................................................................................... 372. Topology in $\mathcal \{G\}$................................................................................................................... 372.1. Two topologies on $\mathcal \{G\}$........................................................................................................... 372.2. Comparison of the two topologies.......................................................................................................... 393. Compactness for lattices............................................................................................................................. 413.1. Two topologies on the lattice space....................................................................................................... 413.2. An important lemma................................................................................................................................... 433.3. An analogue of Mahler’s compactness theorem................................................................................. 444. The Chabauty topology................................................................................................................................. 455. T-adeles ......................................................................................................................................................... 47References.......................................................................................................................................................... 49},
author = {R. B. McFeat},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Geometry of numbers in adele spaces},
url = {http://eudml.org/doc/268414},
year = {1971},
}

TY - BOOK
AU - R. B. McFeat
TI - Geometry of numbers in adele spaces
PY - 1971
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPart I1. Introduction...................................................................................................................................................... 52. Preliminaries.................................................................................................................................................. 62.1. Notation........................................................................................................................................................ 62.2. Local preliminaries.................................................................................................................................... 63. The space $\mathcal {A}$............................................................................................................................. 93.1. Generalities................................................................................................................................................. 93.2. Linear transformations of $\mathcal {A}$............................................................................................... 103.3. Global measure.......................................................................................................................................... 114. Lattices and convex bodies.......................................................................................................................... 114.1. Lattices......................................................................................................................................................... 114.2. Convex bodies............................................................................................................................................. 135. An analogue of Minkowski’s convex body theorem................................................................................. 155.1. Convex body theorem................................................................................................................................ 155.2. Applications of theorem 2......................................................................................................................... 166. Successive minima....................................................................................................................................... 186.1. Preliminaries............................................................................................................................................... 186.2. The product of successive minima; an upper bound.......................................................................... 196.3. The product of successive minima; a lower bound............................................................................ 226.4. Applications to algebraic number theory................................................................................................ 247. T-adeles........................................................................................................................................................... 327.1. The general theory for T-adeles............................................................................................................... 327.2. Two special cases..................................................................................................................................... 35Part II1. Introduction ..................................................................................................................................................... 372. Topology in $\mathcal {G}$................................................................................................................... 372.1. Two topologies on $\mathcal {G}$........................................................................................................... 372.2. Comparison of the two topologies.......................................................................................................... 393. Compactness for lattices............................................................................................................................. 413.1. Two topologies on the lattice space....................................................................................................... 413.2. An important lemma................................................................................................................................... 433.3. An analogue of Mahler’s compactness theorem................................................................................. 444. The Chabauty topology................................................................................................................................. 455. T-adeles ......................................................................................................................................................... 47References.......................................................................................................................................................... 49
LA - eng
UR - http://eudml.org/doc/268414
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.