On a mixed Littlewood conjecture for quadratic numbers
- [1] Université Bordeaux I UFR Math-Info. Laboratoire A2X 351 cours de la Libération 33405 Talence, France
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 207-215
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topde Mathan, Bernard. "On a mixed Littlewood conjecture for quadratic numbers." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 207-215. <http://eudml.org/doc/249462>.
@article{deMathan2005,
	abstract = {We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in $ p$-adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.},
	affiliation = {Université Bordeaux I UFR Math-Info. Laboratoire A2X 351 cours de la Libération 33405 Talence, France},
	author = {de Mathan, Bernard},
	journal = {Journal de Théorie des Nombres de Bordeaux},
	language = {eng},
	number = {1},
	pages = {207-215},
	publisher = {Université Bordeaux 1},
	title = {On a mixed Littlewood conjecture for quadratic numbers},
	url = {http://eudml.org/doc/249462},
	volume = {17},
	year = {2005},
}
TY  - JOUR
AU  - de Mathan, Bernard
TI  - On a mixed Littlewood conjecture for quadratic numbers
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
PB  - Université Bordeaux 1
VL  - 17
IS  - 1
SP  - 207
EP  - 215
AB  - We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in $ p$-adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.
LA  - eng
UR  - http://eudml.org/doc/249462
ER  - 
References
top- M. Bauer, M. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270. Zbl1010.11020MR1908198
- Y. Bugeaud, M. Laurent, Minoration effective de la distance -adique entre puissances de nombres algébriques. J. Number Theory 61 (1996), 311–342. Zbl0870.11045MR1423057
- B. de Mathan, Linear forms in logarithms and simultaneous Diophantine approximation. (To appear). Zbl1195.11086
- B. de Mathan, Approximations diophantiennes dans un corps local. Bull. Soc. math. France, Mémoire 21 (1970). Zbl0221.10037MR274396
- B. de Mathan, O. Teulié, Problèmes diophantiens simultanés. Monatshefte Math. 143 (2004), 229–245. Zbl1162.11361MR2103807
- D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957), 125–131. Zbl0079.27401MR93508
- L. G. Peck, Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc. 67 (1961), 197–201. Zbl0098.26302MR122772
- K. Yu, -adic logarithmic forms and group varieties II. Acta Arith. 89 (1999), 337–378. Zbl0928.11031MR1703864
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 