On a mixed Littlewood conjecture for quadratic numbers

Bernard de Mathan[1]

  • [1] Université Bordeaux I UFR Math-Info. Laboratoire A2X 351 cours de la Libération 33405 Talence, France

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 207-215
  • ISSN: 1246-7405

Abstract

top
We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in p -adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.

How to cite

top

de Mathan, Bernard. "On a mixed Littlewood conjecture for quadratic numbers." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 207-215. <http://eudml.org/doc/249462>.

@article{deMathan2005,
abstract = {We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in $ p$-adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.},
affiliation = {Université Bordeaux I UFR Math-Info. Laboratoire A2X 351 cours de la Libération 33405 Talence, France},
author = {de Mathan, Bernard},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {207-215},
publisher = {Université Bordeaux 1},
title = {On a mixed Littlewood conjecture for quadratic numbers},
url = {http://eudml.org/doc/249462},
volume = {17},
year = {2005},
}

TY - JOUR
AU - de Mathan, Bernard
TI - On a mixed Littlewood conjecture for quadratic numbers
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 207
EP - 215
AB - We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in $ p$-adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.
LA - eng
UR - http://eudml.org/doc/249462
ER -

References

top
  1. M. Bauer, M. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270. Zbl1010.11020MR1908198
  2. Y. Bugeaud, M. Laurent, Minoration effective de la distance p -adique entre puissances de nombres algébriques. J. Number Theory 61 (1996), 311–342. Zbl0870.11045MR1423057
  3. B. de Mathan, Linear forms in logarithms and simultaneous Diophantine approximation. (To appear). Zbl1195.11086
  4. B. de Mathan, Approximations diophantiennes dans un corps local. Bull. Soc. math. France, Mémoire 21 (1970). Zbl0221.10037MR274396
  5. B. de Mathan, O. Teulié, Problèmes diophantiens simultanés. Monatshefte Math. 143 (2004), 229–245. Zbl1162.11361MR2103807
  6. D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957), 125–131. Zbl0079.27401MR93508
  7. L. G. Peck, Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc. 67 (1961), 197–201. Zbl0098.26302MR122772
  8. K. Yu, p -adic logarithmic forms and group varieties II. Acta Arith. 89 (1999), 337–378. Zbl0928.11031MR1703864

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.