Designs, groups and lattices

Christine Bachoc[1]

  • [1] Université Bordeaux I 351, cours de la Libération 33405 Talence, France

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 25-44
  • ISSN: 1246-7405

Abstract

top
The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold 6 -Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which is revealed in a certain construction involving the Clifford group.

How to cite

top

Bachoc, Christine. "Designs, groups and lattices." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 25-44. <http://eudml.org/doc/249471>.

@article{Bachoc2005,
abstract = {The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold $6$-Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which is revealed in a certain construction involving the Clifford group.},
affiliation = {Université Bordeaux I 351, cours de la Libération 33405 Talence, France},
author = {Bachoc, Christine},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Grassmannian spaces; Grassmannian design; Clifford group},
language = {eng},
number = {1},
pages = {25-44},
publisher = {Université Bordeaux 1},
title = {Designs, groups and lattices},
url = {http://eudml.org/doc/249471},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Bachoc, Christine
TI - Designs, groups and lattices
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 25
EP - 44
AB - The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold $6$-Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which is revealed in a certain construction involving the Clifford group.
LA - eng
KW - Grassmannian spaces; Grassmannian design; Clifford group
UR - http://eudml.org/doc/249471
ER -

References

top
  1. C. Bachoc, E. Bannai, R. Coulangeon, Codes and designs in Grassmannian spaces. Discrete Mathematics 277 (2004), 15–28. Zbl1040.05005MR2033722
  2. C. Bachoc, Linear programming bounds for codes in Grassmannian spaces. In preparation. Zbl1282.94106
  3. C. Bachoc, R. Coulangeon, G. Nebe, Designs in Grassmannian spaces and lattices. J. Algebraic Combinatorics 16 (2002), 5–19. Zbl1035.05027MR1941981
  4. C. Bachoc, G. Nebe, Siegel modular forms, Grassmannian designs, and unimodular lattices. Proceedings of the 19th Algebraic Combinatorics Symposium, Kumamoto (2002). Zbl1046.11050
  5. C. Bachoc, B. Venkov, Modular forms, lattices and spherical designs. In “Réseaux euclidiens, designs sphériques et formes modulaires”, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001), 87–111. Zbl1061.11035MR1878746
  6. E. Bannai, T. Ito, Agebraic Combinatorics I, Association Schemes (1984). Zbl0555.05019MR882540
  7. M. Broué, M. Enguehard, Une famille infinie de formes quadratiques entières et leurs groupes d’automorphismes. Ann. Scient. E.N.S., 4 e série, 6 (1973), 17–52. Zbl0261.20022MR335654
  8. B. Bolt, The Clifford collineation, transform and similarity groups III: generators and involutions. J. Australian Math. Soc, 2 (1961), 334–344. Zbl0107.02701MR142666
  9. B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups I. J. Australian Math. Soc, 2 (1961), 60–79 Zbl0097.01702MR125874
  10. B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups II. J. Australian Math. Soc, 2 (1961), 80–96 Zbl0097.01702MR125874
  11. J. H. Conway, R. H. Hardin, E. Rains, P.W. Shor, N. J. A. Sloane, A group-theoretical framework for the construction of packings in Grassmannian spaces. J. Algebraic Comb. 9 (1999), 129–140. Zbl0941.51033MR1679247
  12. J. H. Conway, R. H. Hardin, N. J. A. Sloane, Packing Lines, Planes, etc., Packings in Grassmannian Spaces. Experimental Mathematics 5 (1996), 139–159. Zbl0864.51012MR1418961
  13. R. Coulangeon, Réseaux k -extrêmes. Proc. London Math. Soc. (3) 73 (1996), no. 3, 555–574. Zbl0861.11040MR1407461
  14. P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs. Geom. Dedicata 6 (1977), 363–388. Zbl0376.05015MR485471
  15. P. Delsarte, V.I. Levenshtein, Association schemes and coding theory. IEEE Trans. Inf. Th. 44 (6) (1998), 2477–2504. Zbl0946.05086MR1658771
  16. R. Goodman, N. R. Wallach, Representations and invariants of the classical groups. Encyclopedia of Mathematics and its Applications 68, Cambridge University Press, 1998. Zbl0901.22001MR1606831
  17. A.T. James, A.G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold. Proc. London Math. Soc. (3) 29 (1974), 174–192. Zbl0289.33031MR374523
  18. J. Martinet, Sur certains designs sphériques liés à des réseaux entiers. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). Zbl1065.11050MR1878748
  19. G. Nebe, W. Plesken, Finite rational matrix groups. Memoirs of the AMS, vol. 116, nb. 556 (1995). Zbl0837.20056MR1265024
  20. G. Nebe, E. Rains, N.J.A Sloane, The invariants of the Clifford groups. Designs, Codes, and Cryptography 24 (1) (2001), 99–122. Zbl1002.11057MR1845897
  21. G. Nebe, N.J.A Sloane, A catalogue of lattices. http://www.research.att.com/ ˜ njas/lattices/index.html 
  22. G. Nebe, B. Venkov, The strongly perfect lattices of dimension 10 . J. Théorie de Nombres de Bordeaux 12 (2000), 503–518. Zbl0997.11049MR1823200
  23. G. Nebe, B. Venkov, The strongly perfect lattices of dimension 12 . In preparation. Zbl0997.11049
  24. B. Runge, On Siegel modular forms I. J. Reine Angew. Math. 436 (1993), 57–85. Zbl0772.11015MR1207281
  25. B. Runge, On Siegel modular forms II. Nagoya Math. J. 138 (1995), 179–197. Zbl0824.11031MR1339948
  26. B. Runge, Codes and Siegel modular forms. Discrete Math. 148 (1995), 175–205. Zbl0854.11071MR1368288
  27. D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups. Amer. J. Math. 102 (4) (1980), 625–662. Zbl0448.33019MR584464
  28. D. Stanton, Orthogonal polynomials and Chevalley groups. In Special functions: Group theoretical aspects and applications R.A. Askey, T.H. Koornwinder, W. Schempp editors, Mathematics and its applications, D. Reidel Publishing Company, 1984. Zbl0578.20041MR774056
  29. B. Venkov, Réseaux et designs sphériques. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). Zbl1054.11034MR1878745
  30. H. Wei, Y. Wang, Suborbits of the transitive set of subspaces of type (m,0) under finite classical groups. Algebra Colloq. 3:1 (1996), 73–84. Zbl0843.05009MR1374163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.