Designs, groups and lattices
- [1] Université Bordeaux I 351, cours de la Libération 33405 Talence, France
 
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 25-44
 - ISSN: 1246-7405
 
Access Full Article
topAbstract
topHow to cite
topBachoc, Christine. "Designs, groups and lattices." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 25-44. <http://eudml.org/doc/249471>.
@article{Bachoc2005,
	abstract = {The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold $6$-Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which is revealed in a certain construction involving the Clifford group.},
	affiliation = {Université Bordeaux I 351, cours de la Libération 33405 Talence, France},
	author = {Bachoc, Christine},
	journal = {Journal de Théorie des Nombres de Bordeaux},
	keywords = {Grassmannian spaces; Grassmannian design; Clifford group},
	language = {eng},
	number = {1},
	pages = {25-44},
	publisher = {Université Bordeaux 1},
	title = {Designs, groups and lattices},
	url = {http://eudml.org/doc/249471},
	volume = {17},
	year = {2005},
}
TY  - JOUR
AU  - Bachoc, Christine
TI  - Designs, groups and lattices
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
PB  - Université Bordeaux 1
VL  - 17
IS  - 1
SP  - 25
EP  - 44
AB  - The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold $6$-Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which is revealed in a certain construction involving the Clifford group.
LA  - eng
KW  - Grassmannian spaces; Grassmannian design; Clifford group
UR  - http://eudml.org/doc/249471
ER  - 
References
top- C. Bachoc, E. Bannai, R. Coulangeon, Codes and designs in Grassmannian spaces. Discrete Mathematics 277 (2004), 15–28. Zbl1040.05005MR2033722
 - C. Bachoc, Linear programming bounds for codes in Grassmannian spaces. In preparation. Zbl1282.94106
 - C. Bachoc, R. Coulangeon, G. Nebe, Designs in Grassmannian spaces and lattices. J. Algebraic Combinatorics 16 (2002), 5–19. Zbl1035.05027MR1941981
 - C. Bachoc, G. Nebe, Siegel modular forms, Grassmannian designs, and unimodular lattices. Proceedings of the 19th Algebraic Combinatorics Symposium, Kumamoto (2002). Zbl1046.11050
 - C. Bachoc, B. Venkov, Modular forms, lattices and spherical designs. In “Réseaux euclidiens, designs sphériques et formes modulaires”, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001), 87–111. Zbl1061.11035MR1878746
 - E. Bannai, T. Ito, Agebraic Combinatorics I, Association Schemes (1984). Zbl0555.05019MR882540
 - M. Broué, M. Enguehard, Une famille infinie de formes quadratiques entières et leurs groupes d’automorphismes. Ann. Scient. E.N.S., série, 6 (1973), 17–52. Zbl0261.20022MR335654
 - B. Bolt, The Clifford collineation, transform and similarity groups III: generators and involutions. J. Australian Math. Soc, 2 (1961), 334–344. Zbl0107.02701MR142666
 - B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups I. J. Australian Math. Soc, 2 (1961), 60–79 Zbl0097.01702MR125874
 - B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups II. J. Australian Math. Soc, 2 (1961), 80–96 Zbl0097.01702MR125874
 - J. H. Conway, R. H. Hardin, E. Rains, P.W. Shor, N. J. A. Sloane, A group-theoretical framework for the construction of packings in Grassmannian spaces. J. Algebraic Comb. 9 (1999), 129–140. Zbl0941.51033MR1679247
 - J. H. Conway, R. H. Hardin, N. J. A. Sloane, Packing Lines, Planes, etc., Packings in Grassmannian Spaces. Experimental Mathematics 5 (1996), 139–159. Zbl0864.51012MR1418961
 - R. Coulangeon, Réseaux -extrêmes. Proc. London Math. Soc. (3) 73 (1996), no. 3, 555–574. Zbl0861.11040MR1407461
 - P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs. Geom. Dedicata 6 (1977), 363–388. Zbl0376.05015MR485471
 - P. Delsarte, V.I. Levenshtein, Association schemes and coding theory. IEEE Trans. Inf. Th. 44 (6) (1998), 2477–2504. Zbl0946.05086MR1658771
 - R. Goodman, N. R. Wallach, Representations and invariants of the classical groups. Encyclopedia of Mathematics and its Applications 68, Cambridge University Press, 1998. Zbl0901.22001MR1606831
 - A.T. James, A.G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold. Proc. London Math. Soc. (3) 29 (1974), 174–192. Zbl0289.33031MR374523
 - J. Martinet, Sur certains designs sphériques liés à des réseaux entiers. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). Zbl1065.11050MR1878748
 - G. Nebe, W. Plesken, Finite rational matrix groups. Memoirs of the AMS, vol. 116, nb. 556 (1995). Zbl0837.20056MR1265024
 - G. Nebe, E. Rains, N.J.A Sloane, The invariants of the Clifford groups. Designs, Codes, and Cryptography 24 (1) (2001), 99–122. Zbl1002.11057MR1845897
 - G. Nebe, N.J.A Sloane, A catalogue of lattices. http://www.research.att.com/njas/lattices/index.html
 - G. Nebe, B. Venkov, The strongly perfect lattices of dimension . J. Théorie de Nombres de Bordeaux 12 (2000), 503–518. Zbl0997.11049MR1823200
 - G. Nebe, B. Venkov, The strongly perfect lattices of dimension . In preparation. Zbl0997.11049
 - B. Runge, On Siegel modular forms I. J. Reine Angew. Math. 436 (1993), 57–85. Zbl0772.11015MR1207281
 - B. Runge, On Siegel modular forms II. Nagoya Math. J. 138 (1995), 179–197. Zbl0824.11031MR1339948
 - B. Runge, Codes and Siegel modular forms. Discrete Math. 148 (1995), 175–205. Zbl0854.11071MR1368288
 - D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups. Amer. J. Math. 102 (4) (1980), 625–662. Zbl0448.33019MR584464
 - D. Stanton, Orthogonal polynomials and Chevalley groups. In Special functions: Group theoretical aspects and applications R.A. Askey, T.H. Koornwinder, W. Schempp editors, Mathematics and its applications, D. Reidel Publishing Company, 1984. Zbl0578.20041MR774056
 - B. Venkov, Réseaux et designs sphériques. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). Zbl1054.11034MR1878745
 - H. Wei, Y. Wang, Suborbits of the transitive set of subspaces of type (m,0) under finite classical groups. Algebra Colloq. 3:1 (1996), 73–84. Zbl0843.05009MR1374163
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.