The strongly perfect lattices of dimension
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 503-518
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNebe, Gabriele, and Venkov, Boris. "The strongly perfect lattices of dimension $10$." Journal de théorie des nombres de Bordeaux 12.2 (2000): 503-518. <http://eudml.org/doc/248503>.
@article{Nebe2000,
	abstract = {This paper classifies the strongly perfect lattices in dimension $10$. There are up to similarity two such lattices, $K^\{\prime \}_\{10\}$ and its dual lattice.},
	author = {Nebe, Gabriele, Venkov, Boris},
	journal = {Journal de théorie des nombres de Bordeaux},
	keywords = {perfect lattice; spherical design},
	language = {eng},
	number = {2},
	pages = {503-518},
	publisher = {Université Bordeaux I},
	title = {The strongly perfect lattices of dimension $10$},
	url = {http://eudml.org/doc/248503},
	volume = {12},
	year = {2000},
}
TY  - JOUR
AU  - Nebe, Gabriele
AU  - Venkov, Boris
TI  - The strongly perfect lattices of dimension $10$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2000
PB  - Université Bordeaux I
VL  - 12
IS  - 2
SP  - 503
EP  - 518
AB  - This paper classifies the strongly perfect lattices in dimension $10$. There are up to similarity two such lattices, $K^{\prime }_{10}$ and its dual lattice.
LA  - eng
KW  - perfect lattice; spherical design
UR  - http://eudml.org/doc/248503
ER  - 
References
top- [BaV] C. Bachoc, B. Venkov, Modular forms, lattices and spherical designs. In [EM]. Zbl1061.11035
- [Cas] J.W.S. Cassels, Rational quadratic forms. Academic Press (1978). Zbl0395.10029MR522835
- [CoS] J.H. Conway, N.J A. Sloane, Sphere Packings, Lattices and Groups. 3rd edition, Springer-Verlag (1998). Zbl0915.52003
- [CoS] J.H. Conway, N.J.A. Sloane, On Lattices Equivalent to Their Duals. J. Number Theory48 (1994), 373-382. Zbl0810.11041MR1293868
- [EM] Réseaux euclidiens, designs sphériques et groupes. Edited by J. Martinet. Enseignement des Mathématiques, monographie 37, to appear. Zbl1054.11034MR1881618
- [MAG] The Magma Computational Algebra System for Algebra, Number Theory and Geometry. available via the magma home page http://wvw.maths.usyd.edu.au:8000/u/magma/.
- [Mar] J. Martinet, Les Réseaux parfaits des espaces Euclidiens. Masson (1996). Zbl0869.11056MR1434803
- [Marl] J. Martinet, Sur certains designs sphériques liés à des réseaux entiers. In [EM].
- [MiH] J. Milnor, D. Husemoller, Symmetric bilinear forms. Springer-Verlag (1973). Zbl0292.10016MR506372
- [Scha] W. Scharlau, Quadratic and Hermitian Forms. Springer Grundlehren270 (1985). Zbl0584.10010MR770063
- [Sou] B. Souvignier, Irreducible finite integral matrix groups of degree 8 and 10. Math. Comp.61207 (1994), 335-350. Zbl0830.20074MR1213836
- [Ven] B. Venkov, Réseaux et designs sphériques. Notes taken by J. Martinet of lectures by B. Venkov at Bordeaux (1996/1997). In [EM].
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 