Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles
Marcella Palese; Ekkehart Winterroth
Archivum Mathematicum (2005)
- Volume: 041, Issue: 3, page 289-310
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPalese, Marcella, and Winterroth, Ekkehart. "Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles." Archivum Mathematicum 041.3 (2005): 289-310. <http://eudml.org/doc/249500>.
@article{Palese2005,
abstract = {We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that within a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism is not intrinsically arbitrary. As a consequence the existence of canonical global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.},
author = {Palese, Marcella, Winterroth, Ekkehart},
journal = {Archivum Mathematicum},
keywords = {jets; gauge-natural bundles; variational principles; generalized Bianchi identities; Jacobi morphisms; invariance and symmetry properties; generalized Bianchi identities; Jacobi morphism},
language = {eng},
number = {3},
pages = {289-310},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles},
url = {http://eudml.org/doc/249500},
volume = {041},
year = {2005},
}
TY - JOUR
AU - Palese, Marcella
AU - Winterroth, Ekkehart
TI - Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 3
SP - 289
EP - 310
AB - We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that within a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism is not intrinsically arbitrary. As a consequence the existence of canonical global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.
LA - eng
KW - jets; gauge-natural bundles; variational principles; generalized Bianchi identities; Jacobi morphisms; invariance and symmetry properties; generalized Bianchi identities; Jacobi morphism
UR - http://eudml.org/doc/249500
ER -
References
top- Alonso R. J., Decomposition of higher order tangent fields and calculus of variations, Proc. Diff. Geom. Appl. (Brno, 1998), 451–460, Masaryk Univ., Brno, 1999. (1998) MR1708934
- Alonso R. J., -modules, contact valued calculus and Poincaré-Cartan form, Czechoslovak Math. J. 49 (124) (3) (1999), 585–606. (1999) Zbl1011.58011MR1708350
- Anderson J. L., Bergmann P. G., Constraints in covariant field theories, Phys. Rev. 83 (5) (1951), 1018–1025. (1951) Zbl0045.45505MR0044382
- Allemandi G., Fatibene L., Ferraris M., Francaviglia M., Raiteri M., Nöther conserved quantities and entropy in general relativity, In: Recent Developments in General Relativity, Genoa 2000; R. Cianci et al. eds., Springer Italia, Milano (2001), 75–92. Zbl1202.83039MR1852664
- Bergmann P. G., Non-linear field theories, Phys. Rev. 75 (4) (1949), 680–685. (1949) Zbl0039.23004MR0028128
- Bergmann P. G., Conservation laws in general relativity as the generators of coordinate transformations, Phys. Rev. 112 (1) (1958), 287–289. (1958) MR0099236
- Chruściel P. T., On the relation between the Einstein and the Komar expressions for the energy of the gravitational field, Ann. Inst. H. Poincaré 42 (3) (1985), 267–282. (1985) Zbl0645.53063MR0797276
- Eck D. J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981), 1–48. (1981) Zbl0493.53052MR0632164
- Fatibene L., Francaviglia M., Raiteri M., Gauge natural field theories and applications to conservation laws, Proc. VIII Conf. Differential Geom. Appl., O. Kowalski et al. eds.; Silesian University at Opava, Opava (Czech Republic) 2001, 401–413. Zbl1026.70027MR1978794
- Fatibene L., Francaviglia M., Palese M., Conservation laws and variational sequences in gauge-natural theories, Math. Proc. Cambridge Philos. Soc. 130 (2001), 555–569. Zbl0988.58006MR1816809
- Ferraris M., Francaviglia M., The Lagrangian approach to conserved quantities in general relativity, In: Mechanics, Analysis and Geometry: 200 Years after Lagrange; M. Francaviglia ed.; Elsevier Science Publishers B. V. (Amsterdam, 1991), 451–488. (1991) Zbl0717.53060MR1098527
- Ferraris M., Francaviglia M., Raiteri M., Conserved quantities from the equations of motion (with applications to natural and gauge natural theories of gravitation), Classical Quantum Gravity 20 (2003), 4043–4066. MR2017333
- Francaviglia M., Palese M., Second order variations in variational sequences, Steps in Differential Geometry (Debrecen, 2000) Inst. Math. Inform. Debrecen, Hungary (2001), 119–130. Zbl0977.58019MR1859293
- Francaviglia M., Palese M., Generalized Jacobi morphisms in variational sequences, In: Proc. XXI Winter School Geometry and Physics, Srní 2001, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 195–208. Zbl1028.58022MR1972435
- Francaviglia M., Palese M., Vitolo R., Symmetries in finite order variational sequences, Czechoslovak Math. J. 52 (127) (2002), 197–213. Zbl1006.58014MR1885465
- Francaviglia M., Palese M., Vitolo R., Superpotentials in variational sequences, Proc. VII Conf. Differential Geom. Appl., Satellite Conf. of ICM in Berlin (Brno 1998); I. Kolář et al. eds.; Masaryk University in Brno (Czech Republic) 1999, 469–480. (1998) MR1708936
- Francaviglia M., Palese M., Vitolo R., The Hessian and Jacobi morphisms for higher order calculus of variations, Differential Geom. Appl. 22 (1) (2005), 105–120. Zbl1065.58010MR2106379
- Godina M., Matteucci P., Reductive -structures and Lie derivatives, J. Geom. Phys. 47 (1) (2003), 66–86. Zbl1035.53035MR1985484
- Goldberg J. N., Conservation laws in general relativity, Phys. Rev. (2) 111 (1958), 315–320. (1958) Zbl0089.20903MR0099235
- Goldschmidt H., Sternberg S., The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. (1973) Zbl0243.49011MR0341531
- Horák M., Kolář I., On the higher order Poincaré-Cartan forms, Czechoslovak Math. J. 33 (108) (1983), 467–475. (1983) Zbl0545.58004
- Janyška J., Natural and gauge-natural operators on the space of linear connections on a vector bundle, Proc. Differential Geom. Appl. (Brno, 1989); J Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 58–68. (1989) MR1062006
- Janyška J., Reduction theorems for general linear connections, Differential Geom. Appl. 20 (2004), no. 2, 177–196. (196.) MR2038554
- Janyška J., Modugno M., Infinitesimal natural and gauge-natural lifts, Differential Geom. Appl. 2 (2) (1992), 99–121. (1992) Zbl0780.53023MR1245551
- Julia B., Silva S., Currents and superpotentials in classical gauge theories, II, Global Aspects and the example of affine gravity, Classical Quantum Gravity 17 (22) (2000), 4733–4743. Zbl0988.83026MR1797968
- Katz J., A note on Komar’s anomalous factor, Classical Quantum Gravity 2 (3) (1985), 423–425. (1985) MR0792031
- Kolář I., On some operations with connections, Math. Nachr. 69 (1975), 297–306. (1975) MR0391157
- Kolář I., Prolongations of generalized connections, Coll. Math. Soc. János Bolyai, (Differential Geometry, Budapest, 1979) 31 (1979), 317–325. (1979) MR0706928
- Kolář I., A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys. 1 (2) (1984), 127–137. (1984) MR0794983
- Kolář I., Some geometric aspects of the higher order variational calculus, Geom. Meth. in Phys., Proc. Diff. Geom. and its Appl., (Nové Město na Moravě, 1983); D. Krupka ed.; J. E. Purkyně University (Brno, 1984), 155–166. (1983) MR0793206
- Kolář I., Natural operators related with the variational calculus, Proc. Differential Geom. Appl. (Opava, 1992), 461–472, Math. Publ. 1 Silesian Univ. Opava, Opava, 1993. (1992) MR1255562
- Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, N.Y., 1993. (1993) Zbl0782.53013MR1202431
- Kolář I., Virsik G., Connections in first principal prolongations, In: Proc. XVI Winter School Geometry and Physics, Srní 1995, Rend. Circ. Mat. Palermo (2), Suppl. 43 (1995), 163–171. (1995) MR1463518
- Kolář I., Vitolo R., On the Helmholtz operator for Euler morphisms, Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 277–290. Zbl1048.58012MR2006065
- Komar A., Covariant conservation laws in general relativity, Phys. Rev. 113 (3) (1959), 934–936. (1959) Zbl0086.22103MR0102403
- Krupka D., Variational sequences on finite order jet spaces, Proc. Diff. Geom. and its Appl. (Brno, 1989), J. Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 236–254. (1989) MR1062026
- Krupka D., Topics in the calculus of variations: finite order variational sequences, O. Kowalski and D. Krupka eds., Proc. Differential Geom. and its Appl. (Opava, 1992), Math. Publ. 1, Silesian Univ. Opava, Opava, 1993, 473–495. (1992) MR1255563
- Mangiarotti L., Modugno M., Fibered spaces, jet spaces and connections for field theories, In: Proc. Int. Meet. Geom. Phys.; M. Modugno ed.; Pitagora Editrice (Bologna, 1983), 135–165. (1983) Zbl0539.53026MR0760841
- Nöther E., Invariante variationsprobleme, Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918), 235–257. (1918)
- Palese M., Geometric foundations of the calculus of variations. Variational sequences, symmetries and Jacobi morphisms, Ph.D. Thesis, University of Torino (2000).
- Palese M., Winterroth E., [unknown], In preparation. Zbl1233.58002
- Saunders D. J., The geometry of jet bundles, Cambridge Univ. Press (Cambridge, 1989). (1989) Zbl0665.58002MR0989588
- Trautman A., Conservation laws in general relativity, In Gravitation: An introduction to current research, pp. 169–198, Wiley, New York 1962. (198,) MR0143627
- Trautman A., Noether equations and conservation laws, Comm. Math. Phys. 6 (1967), 248–261. (1967) Zbl0172.27803MR0220470
- Trautman A., A metaphysical remark on variational principles, Acta Phys. Polon. B XX (1996), 1–9. (1996) Zbl0966.58503MR1388335
- Vitolo R., Finite order Lagrangian bicomplexes, Math. Proc. Camb. Phil. Soc. 125 (1) (1999), 321–333. (1999) MR1643802
Citations in EuDML Documents
top- Marcella Palese, Ekkehart Winterroth, E. Garrone, Second variational derivative of local variational problems and conservation laws
- Mauro Francaviglia, M. Palese, E. Winterroth, Locally variational invariant field equations and global currents: Chern-Simons theories
- Marcella Palese, Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.