Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles

Marcella Palese; Ekkehart Winterroth

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 3, page 289-310
  • ISSN: 0044-8753

Abstract

top
We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that within a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism is not intrinsically arbitrary. As a consequence the existence of canonical global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.

How to cite

top

Palese, Marcella, and Winterroth, Ekkehart. "Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles." Archivum Mathematicum 041.3 (2005): 289-310. <http://eudml.org/doc/249500>.

@article{Palese2005,
abstract = {We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that within a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism is not intrinsically arbitrary. As a consequence the existence of canonical global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.},
author = {Palese, Marcella, Winterroth, Ekkehart},
journal = {Archivum Mathematicum},
keywords = {jets; gauge-natural bundles; variational principles; generalized Bianchi identities; Jacobi morphisms; invariance and symmetry properties; generalized Bianchi identities; Jacobi morphism},
language = {eng},
number = {3},
pages = {289-310},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles},
url = {http://eudml.org/doc/249500},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Palese, Marcella
AU - Winterroth, Ekkehart
TI - Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 3
SP - 289
EP - 310
AB - We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that within a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism is not intrinsically arbitrary. As a consequence the existence of canonical global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.
LA - eng
KW - jets; gauge-natural bundles; variational principles; generalized Bianchi identities; Jacobi morphisms; invariance and symmetry properties; generalized Bianchi identities; Jacobi morphism
UR - http://eudml.org/doc/249500
ER -

References

top
  1. Alonso R. J., Decomposition of higher order tangent fields and calculus of variations, Proc. Diff. Geom. Appl. (Brno, 1998), 451–460, Masaryk Univ., Brno, 1999. (1998) MR1708934
  2. Alonso R. J., D -modules, contact valued calculus and Poincaré-Cartan form, Czechoslovak Math. J. 49 (124) (3) (1999), 585–606. (1999) Zbl1011.58011MR1708350
  3. Anderson J. L., Bergmann P. G., Constraints in covariant field theories, Phys. Rev. 83 (5) (1951), 1018–1025. (1951) Zbl0045.45505MR0044382
  4. Allemandi G., Fatibene L., Ferraris M., Francaviglia M., Raiteri M., Nöther conserved quantities and entropy in general relativity, In: Recent Developments in General Relativity, Genoa 2000; R. Cianci et al. eds., Springer Italia, Milano (2001), 75–92. Zbl1202.83039MR1852664
  5. Bergmann P. G., Non-linear field theories, Phys. Rev. 75 (4) (1949), 680–685. (1949) Zbl0039.23004MR0028128
  6. Bergmann P. G., Conservation laws in general relativity as the generators of coordinate transformations, Phys. Rev. 112 (1) (1958), 287–289. (1958) MR0099236
  7. Chruściel P. T., On the relation between the Einstein and the Komar expressions for the energy of the gravitational field, Ann. Inst. H. Poincaré 42 (3) (1985), 267–282. (1985) Zbl0645.53063MR0797276
  8. Eck D. J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981), 1–48. (1981) Zbl0493.53052MR0632164
  9. Fatibene L., Francaviglia M., Raiteri M., Gauge natural field theories and applications to conservation laws, Proc. VIII Conf. Differential Geom. Appl., O. Kowalski et al. eds.; Silesian University at Opava, Opava (Czech Republic) 2001, 401–413. Zbl1026.70027MR1978794
  10. Fatibene L., Francaviglia M., Palese M., Conservation laws and variational sequences in gauge-natural theories, Math. Proc. Cambridge Philos. Soc. 130 (2001), 555–569. Zbl0988.58006MR1816809
  11. Ferraris M., Francaviglia M., The Lagrangian approach to conserved quantities in general relativity, In: Mechanics, Analysis and Geometry: 200 Years after Lagrange; M. Francaviglia ed.; Elsevier Science Publishers B. V. (Amsterdam, 1991), 451–488. (1991) Zbl0717.53060MR1098527
  12. Ferraris M., Francaviglia M., Raiteri M., Conserved quantities from the equations of motion (with applications to natural and gauge natural theories of gravitation), Classical Quantum Gravity 20 (2003), 4043–4066. MR2017333
  13. Francaviglia M., Palese M., Second order variations in variational sequences, Steps in Differential Geometry (Debrecen, 2000) Inst. Math. Inform. Debrecen, Hungary (2001), 119–130. Zbl0977.58019MR1859293
  14. Francaviglia M., Palese M., Generalized Jacobi morphisms in variational sequences, In: Proc. XXI Winter School Geometry and Physics, Srní 2001, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 195–208. Zbl1028.58022MR1972435
  15. Francaviglia M., Palese M., Vitolo R., Symmetries in finite order variational sequences, Czechoslovak Math. J. 52 (127) (2002), 197–213. Zbl1006.58014MR1885465
  16. Francaviglia M., Palese M., Vitolo R., Superpotentials in variational sequences, Proc. VII Conf. Differential Geom. Appl., Satellite Conf. of ICM in Berlin (Brno 1998); I. Kolář et al. eds.; Masaryk University in Brno (Czech Republic) 1999, 469–480. (1998) MR1708936
  17. Francaviglia M., Palese M., Vitolo R., The Hessian and Jacobi morphisms for higher order calculus of variations, Differential Geom. Appl. 22 (1) (2005), 105–120. Zbl1065.58010MR2106379
  18. Godina M., Matteucci P., Reductive G -structures and Lie derivatives, J. Geom. Phys. 47 (1) (2003), 66–86. Zbl1035.53035MR1985484
  19. Goldberg J. N., Conservation laws in general relativity, Phys. Rev. (2) 111 (1958), 315–320. (1958) Zbl0089.20903MR0099235
  20. Goldschmidt H., Sternberg S., The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. (1973) Zbl0243.49011MR0341531
  21. Horák M., Kolář I., On the higher order Poincaré-Cartan forms, Czechoslovak Math. J. 33 (108) (1983), 467–475. (1983) Zbl0545.58004
  22. Janyška J., Natural and gauge-natural operators on the space of linear connections on a vector bundle, Proc. Differential Geom. Appl. (Brno, 1989); J Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 58–68. (1989) MR1062006
  23. Janyška J., Reduction theorems for general linear connections, Differential Geom. Appl. 20 (2004), no. 2, 177–196. (196.) MR2038554
  24. Janyška J., Modugno M., Infinitesimal natural and gauge-natural lifts, Differential Geom. Appl. 2 (2) (1992), 99–121. (1992) Zbl0780.53023MR1245551
  25. Julia B., Silva S., Currents and superpotentials in classical gauge theories, II, Global Aspects and the example of affine gravity, Classical Quantum Gravity 17 (22) (2000), 4733–4743. Zbl0988.83026MR1797968
  26. Katz J., A note on Komar’s anomalous factor, Classical Quantum Gravity 2 (3) (1985), 423–425. (1985) MR0792031
  27. Kolář I., On some operations with connections, Math. Nachr. 69 (1975), 297–306. (1975) MR0391157
  28. Kolář I., Prolongations of generalized connections, Coll. Math. Soc. János Bolyai, (Differential Geometry, Budapest, 1979) 31 (1979), 317–325. (1979) MR0706928
  29. Kolář I., A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys. 1 (2) (1984), 127–137. (1984) MR0794983
  30. Kolář I., Some geometric aspects of the higher order variational calculus, Geom. Meth. in Phys., Proc. Diff. Geom. and its Appl., (Nové Město na Moravě, 1983); D. Krupka ed.; J. E. Purkyně University (Brno, 1984), 155–166. (1983) MR0793206
  31. Kolář I., Natural operators related with the variational calculus, Proc. Differential Geom. Appl. (Opava, 1992), 461–472, Math. Publ. 1 Silesian Univ. Opava, Opava, 1993. (1992) MR1255562
  32. Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, N.Y., 1993. (1993) Zbl0782.53013MR1202431
  33. Kolář I., Virsik G., Connections in first principal prolongations, In: Proc. XVI Winter School Geometry and Physics, Srní 1995, Rend. Circ. Mat. Palermo (2), Suppl. 43 (1995), 163–171. (1995) MR1463518
  34. Kolář I., Vitolo R., On the Helmholtz operator for Euler morphisms, Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 277–290. Zbl1048.58012MR2006065
  35. Komar A., Covariant conservation laws in general relativity, Phys. Rev. 113 (3) (1959), 934–936. (1959) Zbl0086.22103MR0102403
  36. Krupka D., Variational sequences on finite order jet spaces, Proc. Diff. Geom. and its Appl. (Brno, 1989), J. Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 236–254. (1989) MR1062026
  37. Krupka D., Topics in the calculus of variations: finite order variational sequences, O. Kowalski and D. Krupka eds., Proc. Differential Geom. and its Appl. (Opava, 1992), Math. Publ. 1, Silesian Univ. Opava, Opava, 1993, 473–495. (1992) MR1255563
  38. Mangiarotti L., Modugno M., Fibered spaces, jet spaces and connections for field theories, In: Proc. Int. Meet. Geom. Phys.; M. Modugno ed.; Pitagora Editrice (Bologna, 1983), 135–165. (1983) Zbl0539.53026MR0760841
  39. Nöther E., Invariante variationsprobleme, Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918), 235–257. (1918) 
  40. Palese M., Geometric foundations of the calculus of variations. Variational sequences, symmetries and Jacobi morphisms, Ph.D. Thesis, University of Torino (2000). 
  41. Palese M., Winterroth E., [unknown], In preparation. Zbl1233.58002
  42. Saunders D. J., The geometry of jet bundles, Cambridge Univ. Press (Cambridge, 1989). (1989) Zbl0665.58002MR0989588
  43. Trautman A., Conservation laws in general relativity, In Gravitation: An introduction to current research, pp. 169–198, Wiley, New York 1962. (198,) MR0143627
  44. Trautman A., Noether equations and conservation laws, Comm. Math. Phys. 6 (1967), 248–261. (1967) Zbl0172.27803MR0220470
  45. Trautman A., A metaphysical remark on variational principles, Acta Phys. Polon. B XX (1996), 1–9. (1996) Zbl0966.58503MR1388335
  46. Vitolo R., Finite order Lagrangian bicomplexes, Math. Proc. Camb. Phil. Soc. 125 (1) (1999), 321–333. (1999) MR1643802

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.