Locally variational invariant field equations and global currents: Chern-Simons theories
Mauro Francaviglia; M. Palese; E. Winterroth
Communications in Mathematics (2012)
- Volume: 20, Issue: 1, page 13-22
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topFrancaviglia, Mauro, Palese, M., and Winterroth, E.. "Locally variational invariant field equations and global currents: Chern-Simons theories." Communications in Mathematics 20.1 (2012): 13-22. <http://eudml.org/doc/246897>.
@article{Francaviglia2012,
abstract = {We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.},
author = {Francaviglia, Mauro, Palese, M., Winterroth, E.},
journal = {Communications in Mathematics},
keywords = {local variational problem; global current; Chern-Simons theory; local variational problem; global current; Chern-Simons theory},
language = {eng},
number = {1},
pages = {13-22},
publisher = {University of Ostrava},
title = {Locally variational invariant field equations and global currents: Chern-Simons theories},
url = {http://eudml.org/doc/246897},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Francaviglia, Mauro
AU - Palese, M.
AU - Winterroth, E.
TI - Locally variational invariant field equations and global currents: Chern-Simons theories
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 1
SP - 13
EP - 22
AB - We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.
LA - eng
KW - local variational problem; global current; Chern-Simons theory; local variational problem; global current; Chern-Simons theory
UR - http://eudml.org/doc/246897
ER -
References
top- Allemandi, G., Francaviglia, M., Raiteri, M., 10.1088/0264-9381/20/3/307, Classical Quant. Grav., 20, 3, 2003, 483-506 (2003) Zbl1023.83018MR1957170DOI10.1088/0264-9381/20/3/307
- Anderson, I.M., 10.2307/2006945, Ann. of Math. (2), 120, 2, 1984, 329-370 (1984) Zbl0565.58019MR0763910DOI10.2307/2006945
- Bañados, M., Teitelboim, C., Zanelli, J., 10.1103/PhysRevLett.69.1849, Phys. Rev. Lett., 69, 13, 1992, 1849-1851 (1992) Zbl0968.83514MR1181663DOI10.1103/PhysRevLett.69.1849
- Borowiec, A., Ferraris, M., Francaviglia, M., 10.1088/0305-4470/36/10/318, J. Phys. A., 36, 2003, 2589-2598 (2003) Zbl1027.83012MR1967520DOI10.1088/0305-4470/36/10/318
- Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M., Conservation laws for non-global Lagrangians, Univ. Iagel. Acta Math., 41, 2003, 319-331 (2003) Zbl1060.70034MR2084774
- Brajerčík, J., Krupka, D., 10.1063/1.1901323, J. Math. Phys., 46, 5, 2005, 052903, 15 pp. (2005) Zbl1110.58011MR2143003DOI10.1063/1.1901323
- Chamseddine, A.H., 10.1016/0550-3213(90)90245-9, Nucl. Phys. B, 346, 1, 1990, 213-234 (1990) MR1076761DOI10.1016/0550-3213(90)90245-9
- Chern, S.S., Simons, J., 10.1073/pnas.68.4.791, Proc. Nat. Acad. Sci. U.S.A., 68, 4, 1971, 791-794 (1971) Zbl0209.25401MR0279732DOI10.1073/pnas.68.4.791
- Chern, S.S., Simons, J., 10.2307/1971013, Ann. Math., 99, 1974, 48-69 (1974) Zbl0283.53036MR0353327DOI10.2307/1971013
- Deser, S., Jackiw, R., Templeton, S., 10.1016/0003-4916(82)90164-6, Ann. Physics, 140, 2, 1982, 372-411 (1982) MR0665601DOI10.1016/0003-4916(82)90164-6
- Eck, D.J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc., 247, 1981, 1-48 (1981) Zbl0493.53052MR0632164
- Fatibene, L., Ferraris, M., Francaviglia, M., 10.1142/S0219887805000557, Int. J. Geom. Methods Mod. Phys., 2, 3, 2005, 373-392 (2005) Zbl1133.70335MR2152166DOI10.1142/S0219887805000557
- Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E., 10.1142/S0219887808003144, Int. J. Geom. Methods Mod. Phys., 5, 6, 2008, 973-988 (2008) Zbl1175.58006MR2453935DOI10.1142/S0219887808003144
- Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E., 10.1142/S0219887811005075, Int. J. Geom. Methods Mod. Phys., 8, 1, 2011, 177-185 (2011) Zbl1215.58005MR2782884DOI10.1142/S0219887811005075
- Ferraris, M., Francaviglia, M., Raiteri, M., 10.1088/0264-9381/20/18/312, Classical Quant. Grav., 20, 2003, 4043-4066 (2003) MR2017333DOI10.1088/0264-9381/20/18/312
- Ferraris, M., Palese, M., Winterroth, E., Local variational problems and conservation laws, Diff. Geom. Appl, 29, 2011, S80-S85 (2011) Zbl1233.58002MR2832003
- Francaviglia, M., Palese, M., Winterroth, E., Second variational derivative of gauge-natural invariant Lagrangians and conservation laws, 2005, Differential geometry and its applications, Matfyzpress, Prague, 591-604 (2005) Zbl1109.58005MR2268969
- Francaviglia, M., Palese, M., Winterroth, E., Variationally equivalent problems and variations of Noether currents, Int. J. Geom. Methods Mod. Phys., 10, 1, 2013, 1220024 (10 pages). (2013) Zbl1271.58008MR2998326
- Francaviglia, M., Palese, M., Vitolo, R., 10.1023/A:1021735824163, Czech. Math. J., 52, 1, 2002, 197-213 (2002) Zbl1006.58014MR1885465DOI10.1023/A:1021735824163
- Krupka, D., Variational Sequences on Finite Order Jet Spaces, Proc. Diff. Geom. Appl., 1990, 236-254, J. Janyška, D. Krupka eds., World Sci., Singapore (1990) Zbl0813.58014MR1062026
- Krupka, D., Sedenkova, J., Variational sequences and Lepage forms, Differential geometry and its applications, Matfyzpress, Prague, 2005, 617-627 (2005) Zbl1115.35349MR2271823
- Krupkova, O., Lepage forms in the calculus of variations, Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 27-55 (2009) Zbl1208.58019MR2523431
- Lepage, Th.H.J., Sur les champ geodesiques du Calcul de Variations, I, II, Bull. Acad. Roy. Belg., Cl. Sci., 22, 1936, 716-729, 1036--1046 (1936)
- Musilová, J., Lenc, M., Lepage forms in variational theories from Lepage's idea to the variational sequence, Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 3-26 (2009) Zbl1208.58001MR2523430
- Noether, E., Invariante Variationsprobleme, Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257 (1918)
- Palese, M., Winterroth, E., Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles, Arch. Math. (Brno), 41, 3, 2005, 289-310 (2005) Zbl1112.58005MR2188385
- Palese, M., Winterroth, E., 10.1016/S0034-4877(04)80024-7, Rep. Math. Phys., 54, 3, 2004, 349-364 (2004) Zbl1066.58009MR2115744DOI10.1016/S0034-4877(04)80024-7
- Palese, M., Winterroth, E., On the relation between the Jacobi morphism and the Hessian in gauge-natural field theories, Teoret. Mat. Fiz., 152, 2, 2007, 377-389, transl. Theoret. and Math. Phys. 152 (2007) 1191--1200 (2007) MR2429287
- Palese, M., Winterroth, E., Variational Lie derivative and cohomology classes, AIP Conf. Proc., 1360, 2011, 106-112 (2011) Zbl1276.70012
- Palese, M., Winterroth, E., Garrone, E., Second variational derivative of local variational problems and conservation laws, Arch. Math. (Brno), 47, 5, 2011, 395-403 (2011) Zbl1265.58008MR2876943
- Sardanashvily, G., Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian, arXiv:math-ph/0302012
- Witten, E., 10.1016/0550-3213(88)90143-5, Nucl. Phys., B 311, 1, 1988, 46-78, E. Witten: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121 (1989) 351-399 (1988) MR0974271DOI10.1016/0550-3213(88)90143-5
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.