Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents
Communications in Mathematics (2016)
- Volume: 24, Issue: 2, page 125-135
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topPalese, Marcella. "Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents." Communications in Mathematics 24.2 (2016): 125-135. <http://eudml.org/doc/287919>.
@article{Palese2016,
abstract = {We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents – associated with variations of local Lagrangians – which in particular turn out to be conserved along any section. We also characterize the variation of the canonical Noether currents associated with a local variational problem.},
author = {Palese, Marcella},
journal = {Communications in Mathematics},
keywords = {fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative. cohomology; symmetry; conservation law; fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law},
language = {eng},
number = {2},
pages = {125-135},
publisher = {University of Ostrava},
title = {Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents},
url = {http://eudml.org/doc/287919},
volume = {24},
year = {2016},
}
TY - JOUR
AU - Palese, Marcella
TI - Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents
JO - Communications in Mathematics
PY - 2016
PB - University of Ostrava
VL - 24
IS - 2
SP - 125
EP - 135
AB - We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents – associated with variations of local Lagrangians – which in particular turn out to be conserved along any section. We also characterize the variation of the canonical Noether currents associated with a local variational problem.
LA - eng
KW - fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative. cohomology; symmetry; conservation law; fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law
UR - http://eudml.org/doc/287919
ER -
References
top- Allemandi, G., Francaviglia, M., Raiteri, M., Covariant charges in Chern-Simons gravity, Classical Quantum Gravity, 20, 3, 2003, 483-506, (2003) MR1957170
- Anderson, I. M., Duchamp, T., 10.2307/2374195, Amer. Math. J., 102, 1980, 781-868, (1980) Zbl0454.58021MR0590637DOI10.2307/2374195
- Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G., 10.1063/1.1899988, J. Math. Phys., 46, 5, 2005, 053517, 23 pp.. (2005) Zbl1110.58010MR2143026DOI10.1063/1.1899988
- Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G., Noether's second theorem in a general setting reducible gauge theories, J. Phys., A38, 2005, 5329-5344, (2005) Zbl1070.70014MR2148427
- Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G., 10.1063/1.2054647, J. Math. Phys., 46, 10, 2005, 103513, 19 pp.. (2005) Zbl1111.70026MR2178613DOI10.1063/1.2054647
- Bessel-Hagen, E., 10.1007/BF01459410, Math. Ann., 84, 1921, 258-276, (1921) MR1512036DOI10.1007/BF01459410
- Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M., Conservation laws for non-global Lagrangians, Univ. Iagel. Acta Math., 41, 2003, 319-331, (2003) Zbl1060.70034MR2084774
- Brajerčík, J., Krupka, D., 10.1063/1.1901323, J. Math. Phys., 46, 5, 2005, 052903, 15 pp. (2005) Zbl1110.58011MR2143003DOI10.1063/1.1901323
- Cattafi, F., Palese, M., Winterroth, E., Variational derivatives in locally Lagrangian field theories and Noether--Bessel-Hagen currents, Int. J. Geom. Methods Mod. Phys., 13, 8, 2016, 1650067. (2016) Zbl1357.58023MR3544984
- Dedecker, P., Tulczyjew, W. M., 10.1007/BFb0089761, Lecture Notes in Mathematics, 836, 1980, 498-503, Springer--Verlag, (1980) Zbl0482.49027MR0607719DOI10.1007/BFb0089761
- Eck, D. J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc., 247, 1981, 1-48, (1981) Zbl0493.53052MR0632164
- Ferraris, M., Francaviglia, M., Raiteri, M., 10.1088/0264-9381/20/18/312, Class.Quant.Grav., 20, 2003, 4043-4066, (2003) MR2017333DOI10.1088/0264-9381/20/18/312
- Ferraris, M., Palese, M., Winterroth, E., 10.1016/j.difgeo.2011.04.011, Diff. Geom. Appl, 29, 2011, S80-S85, (2011) Zbl1233.58002MR2832003DOI10.1016/j.difgeo.2011.04.011
- Francaviglia, M., Palese, M., Vitolo, R., 10.1023/A:1021735824163, Czech. Math. J., 52, 1, 2002, 197-213, (2002) Zbl1006.58014MR1885465DOI10.1023/A:1021735824163
- Francaviglia, M., Palese, M., Vitolo, R., 10.1016/j.difgeo.2004.07.008, Diff. Geom. Appl., 22, 1, 2005, 105-120, (2005) Zbl1065.58010MR2106379DOI10.1016/j.difgeo.2004.07.008
- Francaviglia, M., Palese, M., Winterroth, E., Locally variational invariant field equations and global currents: Chern-Simons theories, Commun. Math., 20, 1, 2012, 13-22, (2012) Zbl1344.70047MR3001628
- Francaviglia, M., Palese, M., Winterroth, E., Variationally equivalent problems and variations of Noether currents, Int. J. Geom. Meth. Mod. Phys., 10, 1, 2013, 1220024. (2013) Zbl1271.58008MR2998326
- Francaviglia, M., Palese, M., Winterroth, E., Cohomological obstructions in locally variational field theories, Jour. Phys. Conf. Series, 474, 2013, 012017. (2013)
- Giachetta, G., Mangiarotti, L., Sardanashvily, G., 10.1007/s00220-005-1297-6, Comm. Math. Phys., 259, 1, 2005, 103-128, (2005) Zbl1086.58008MR2169970DOI10.1007/s00220-005-1297-6
- Kosmann-Schwarzbach, Y., The Noether Theorems; translated from French by Bertram E. Schwarzbach, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York , 2011, (2011) MR2761345
- Krupka, D., Some Geometric Aspects of Variational Problems in Fibred Manifolds, Folia Fac. Sci. Nat. UJEP Brunensis, 14, 1973, 1-65, (1973)
- Krupka, D., Variational Sequences on Finite Order Jet Spaces, Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, 236-254, World Scientific, (1989) MR1062026
- Krupka, D., Krupková, O., Prince, G., Sarlet, W., 10.1016/j.difgeo.2007.06.003, Differential Geom. Appl., 25, 5, 2007, 518-542, (2007) Zbl1354.58012MR2351428DOI10.1016/j.difgeo.2007.06.003
- Noether, E., Invariante Variationsprobleme, Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257, (1918)
- Palese, M., Rossi, O., Winterroth, E., Musilová, J., Variational sequences, representation sequences and applications in physics, SIGMA, 12, 2016, 045, 45 pages. (2016) Zbl1347.70043MR3492865
- Palese, M., Winterroth, E., 10.1016/S0034-4877(04)80024-7, Rep. Math. Phys., 54, 3, 2004, 349-364, (2004) Zbl1066.58009MR2115744DOI10.1016/S0034-4877(04)80024-7
- Palese, M., Winterroth, E., Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles, Arch. Math. (Brno), 41, 3, 2005, 289-310, (2005) Zbl1112.58005MR2188385
- Palese, M., Winterroth, E., Noether Theorems and Reality of Motion, Proc. Marcel Grossmann Meeting 2015, 2016, World Scientific, to appear. (2016)
- Palese, M., Winterroth, E., Variational Lie derivative and cohomology classes, AIP Conf. Proc., 1360, 2011, 106-112, (2011) Zbl1276.70012
- Palese, M., Winterroth, E., Topological obstructions in Lagrangian field theories, with an application to D Chern–Simons gauge theory, preprint submitted. MR3605665
- Sardanashvily, G., Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian, arXiv:math-ph/0302012 , 2003, (2003)
- Sardanashvily, G., 10.1142/S0219887805000818, Int. J. Geom. Methods Mod. Phys., 2, 5, 2005, 873-886, (2005) Zbl1085.58005MR2177289DOI10.1142/S0219887805000818
- Sardanashvily, G., Noether's theorems. Applications in mechanics and field theory, Atlantis Studies in Variational Geometry, 3, 2016, Atlantis Press, Paris, xvii+297 pp.. (2016) Zbl1357.58002MR3467590
- Takens, F., 10.4310/jdg/1214435235, J. Diff. Geom., 14, 1979, 543-562, (1979) Zbl0463.58015MR0600611DOI10.4310/jdg/1214435235
- Tulczyjew, W. M., 10.24033/bsmf.1860, Bull. Soc. Math. France, 105, 1977, 419-431, (1977) Zbl0408.58020MR0494272DOI10.24033/bsmf.1860
- Vinogradov, A. M., On the algebro-geometric foundations of Lagrangian field theory, Soviet Math. Dokl., 18, 1977, 1200-1204, (1977) Zbl0403.58005MR0501142
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.