A semifilter approach to selection principles

Lubomyr Zdomsky

Commentationes Mathematicae Universitatis Carolinae (2005)

  • Volume: 46, Issue: 3, page 525-539
  • ISSN: 0010-2628

Abstract

top
In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal 𝔤 is a lower bound of the additivity number of the σ -ideal generated by Menger subspaces of the Baire space, and under 𝔲 < 𝔤 every subset X of the real line with the property Split ( Λ , Λ ) is Hurewicz, and thus it is consistent with ZFC that the property Split ( Λ , Λ ) is preserved by unions of less than 𝔟 subsets of the real line.

How to cite

top

Zdomsky, Lubomyr. "A semifilter approach to selection principles." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 525-539. <http://eudml.org/doc/249532>.

@article{Zdomsky2005,
abstract = {In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal $\mathfrak \{g\}$ is a lower bound of the additivity number of the $\sigma $-ideal generated by Menger subspaces of the Baire space, and under $\mathfrak \{u\} < \mathfrak \{g\}$ every subset $X$ of the real line with the property $\operatorname\{Split\} (\Lambda ,\Lambda )$ is Hurewicz, and thus it is consistent with ZFC that the property $\operatorname\{Split\} (\Lambda ,\Lambda )$ is preserved by unions of less than $\mathfrak \{b\}$ subsets of the real line.},
author = {Zdomsky, Lubomyr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Menger property; Hurewicz property; property $\operatorname\{Split\}(\Lambda , \Lambda )$; semifilter; multifunction; small cardinals; additivity number; Menger property; Hurewicz property},
language = {eng},
number = {3},
pages = {525-539},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A semifilter approach to selection principles},
url = {http://eudml.org/doc/249532},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Zdomsky, Lubomyr
TI - A semifilter approach to selection principles
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 525
EP - 539
AB - In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal $\mathfrak {g}$ is a lower bound of the additivity number of the $\sigma $-ideal generated by Menger subspaces of the Baire space, and under $\mathfrak {u} < \mathfrak {g}$ every subset $X$ of the real line with the property $\operatorname{Split} (\Lambda ,\Lambda )$ is Hurewicz, and thus it is consistent with ZFC that the property $\operatorname{Split} (\Lambda ,\Lambda )$ is preserved by unions of less than $\mathfrak {b}$ subsets of the real line.
LA - eng
KW - Menger property; Hurewicz property; property $\operatorname{Split}(\Lambda , \Lambda )$; semifilter; multifunction; small cardinals; additivity number; Menger property; Hurewicz property
UR - http://eudml.org/doc/249532
ER -

References

top
  1. Blass A., Combinatorial cardinal characteristics of the continuum, in Handbook of Set Theory (M. Foreman et. al., Eds.), to appear. MR2768685
  2. Bukovský L., Halež J., On Hurewicz properties, Topology Appl. 132 (2003), 71-79. (2003) MR1990080
  3. Blass A., Mildenberger H., On the cofinality of ultrapowers, J. Symbolic Logic 74 (1999), 727-736. (1999) Zbl0930.03060MR1777781
  4. Bartoszyński T., Shelah S., Tsaban B., Additivity properties of topological diagonalizations, J. Symbolic Logic 68 (2003), 1254-1260. (2003) Zbl1071.03031MR2017353
  5. Bartoszyński T., Tsaban B., Hereditary Topological Diagonalizations and the Menger-Hurewicz Conjectures, Proc. Amer. Math. Soc., to appear; http://arxiv.org/abs/math.LO/0208224. MR2176030
  6. Banakh T., Zdomsky L., Coherence of semifilters, submitted; http://www.franko.lviv.ua/faculty/mechmat/ Departments/Topology/booksite.html. 
  7. Chaber J., Pol R., A remark on Fremlin-Miller theorem concerning the Menger property and Michael concentrated sets, preprint. 
  8. Gerlits J., Nagy Zs., Some properties of C ( X ) , I, Topology Appl. 14 2 (1982), 151-163. (1982) Zbl0503.54020MR0667661
  9. Hurewicz W., Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193-204. (1927) 
  10. Just W., Miller A.W., Scheepers M., Szeptycki P.J., The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266. (1996) Zbl0870.03021MR1419798
  11. Rogers C.A., Jayne J.E., K -analytic Sets, in Analytic Sets (C.A. Rogers et al., Eds.), Academic Press, 1980, pp.1-179. Zbl0589.54047
  12. Kechris A., Classical Descriptive Set Theory, Graduate Texts in Math. 156, Springer, 1995. Zbl0819.04002MR1321597
  13. Laflamme C., Equivalence of families of functions on natural numbers, Trans. Amer. Math. Soc. 330 (1992), 307-319. (1992) MR1028761
  14. Laflamme C., Leary C.C., Filter games on ø m e g a and the dual ideal, Fund. Math. 173 (2002), 159-173. (2002) Zbl0998.03038
  15. Menger K., Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte, Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie) 133 (1924), 421-444. 
  16. Sakai M., Weak Fréchet-Urysohn property in function spaces, preprint, 2004. 
  17. Scheepers M., Combinatorics of open covers I: Ramsey Theory, Topology Appl. 69 (1996), 31-62. (1996) Zbl0848.54018MR1378387
  18. Talagrand M., Filtres: Mesurabilité, rapidité, propriété de Baire forte, Studia Math. 74 (1982), 283-291. (1982) MR0683750
  19. Todorcevic S., Topics in Topology, Lecture Notes in Math. 1652, Springer, Berlin, 1997. Zbl0953.54001MR1442262
  20. SPM Bulletin 9 (B. Tsaban, Ed.), http://arxiv.org/abs/math.GN/0406411, . 
  21. Tsaban B., The combinatorics of splittability, Ann. Pure Appl. Logic 129 (2004), 107-130; http://arxiv.org/abs/math.GN/0307225. (2004) Zbl1067.03055MR2078361
  22. Tsaban B., The Hurewicz covering property and slaloms in the Baire space, Fund. Math. 181 (2004), 273-280; http://arxiv.org/abs/math.GN/0301085. (2004) Zbl1056.54028MR2099604
  23. Tsaban B., Selection principles in mathematics: A milestone of open problems, Note Math. 22 2 (2003/2004), 179-208; http://arxiv.org/abs/math.GN/0312182. (2003/2004) MR2112739
  24. Tsaban B., Some new directions in infinite-combinatorial topology, to appear in Topics in Set Theory and its Applications (J. Bagaria and S. Todorcevic, Eds.), Birkhäuser, 2005; http://arxiv.org/abs/math.GN/0409069. Zbl1113.54002MR2267150
  25. Vaughan J., Small uncountable cardinals and topology, in Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp.197-216. MR1078636

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.