A semifilter approach to selection principles
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 3, page 525-539
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZdomsky, Lubomyr. "A semifilter approach to selection principles." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 525-539. <http://eudml.org/doc/249532>.
@article{Zdomsky2005,
abstract = {In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal $\mathfrak \{g\}$ is a lower bound of the additivity number of the $\sigma $-ideal generated by Menger subspaces of the Baire space, and under $\mathfrak \{u\} < \mathfrak \{g\}$ every subset $X$ of the real line with the property $\operatorname\{Split\} (\Lambda ,\Lambda )$ is Hurewicz, and thus it is consistent with ZFC that the property $\operatorname\{Split\} (\Lambda ,\Lambda )$ is preserved by unions of less than $\mathfrak \{b\}$ subsets of the real line.},
author = {Zdomsky, Lubomyr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Menger property; Hurewicz property; property $\operatorname\{Split\}(\Lambda , \Lambda )$; semifilter; multifunction; small cardinals; additivity number; Menger property; Hurewicz property},
language = {eng},
number = {3},
pages = {525-539},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A semifilter approach to selection principles},
url = {http://eudml.org/doc/249532},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Zdomsky, Lubomyr
TI - A semifilter approach to selection principles
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 525
EP - 539
AB - In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal $\mathfrak {g}$ is a lower bound of the additivity number of the $\sigma $-ideal generated by Menger subspaces of the Baire space, and under $\mathfrak {u} < \mathfrak {g}$ every subset $X$ of the real line with the property $\operatorname{Split} (\Lambda ,\Lambda )$ is Hurewicz, and thus it is consistent with ZFC that the property $\operatorname{Split} (\Lambda ,\Lambda )$ is preserved by unions of less than $\mathfrak {b}$ subsets of the real line.
LA - eng
KW - Menger property; Hurewicz property; property $\operatorname{Split}(\Lambda , \Lambda )$; semifilter; multifunction; small cardinals; additivity number; Menger property; Hurewicz property
UR - http://eudml.org/doc/249532
ER -
References
top- Blass A., Combinatorial cardinal characteristics of the continuum, in Handbook of Set Theory (M. Foreman et. al., Eds.), to appear. MR2768685
- Bukovský L., Halež J., On Hurewicz properties, Topology Appl. 132 (2003), 71-79. (2003) MR1990080
- Blass A., Mildenberger H., On the cofinality of ultrapowers, J. Symbolic Logic 74 (1999), 727-736. (1999) Zbl0930.03060MR1777781
- Bartoszyński T., Shelah S., Tsaban B., Additivity properties of topological diagonalizations, J. Symbolic Logic 68 (2003), 1254-1260. (2003) Zbl1071.03031MR2017353
- Bartoszyński T., Tsaban B., Hereditary Topological Diagonalizations and the Menger-Hurewicz Conjectures, Proc. Amer. Math. Soc., to appear; http://arxiv.org/abs/math.LO/0208224. MR2176030
- Banakh T., Zdomsky L., Coherence of semifilters, submitted; http://www.franko.lviv.ua/faculty/mechmat/ Departments/Topology/booksite.html.
- Chaber J., Pol R., A remark on Fremlin-Miller theorem concerning the Menger property and Michael concentrated sets, preprint.
- Gerlits J., Nagy Zs., Some properties of , I, Topology Appl. 14 2 (1982), 151-163. (1982) Zbl0503.54020MR0667661
- Hurewicz W., Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193-204. (1927)
- Just W., Miller A.W., Scheepers M., Szeptycki P.J., The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266. (1996) Zbl0870.03021MR1419798
- Rogers C.A., Jayne J.E., -analytic Sets, in Analytic Sets (C.A. Rogers et al., Eds.), Academic Press, 1980, pp.1-179. Zbl0589.54047
- Kechris A., Classical Descriptive Set Theory, Graduate Texts in Math. 156, Springer, 1995. Zbl0819.04002MR1321597
- Laflamme C., Equivalence of families of functions on natural numbers, Trans. Amer. Math. Soc. 330 (1992), 307-319. (1992) MR1028761
- Laflamme C., Leary C.C., Filter games on and the dual ideal, Fund. Math. 173 (2002), 159-173. (2002) Zbl0998.03038
- Menger K., Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte, Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie) 133 (1924), 421-444.
- Sakai M., Weak Fréchet-Urysohn property in function spaces, preprint, 2004.
- Scheepers M., Combinatorics of open covers I: Ramsey Theory, Topology Appl. 69 (1996), 31-62. (1996) Zbl0848.54018MR1378387
- Talagrand M., Filtres: Mesurabilité, rapidité, propriété de Baire forte, Studia Math. 74 (1982), 283-291. (1982) MR0683750
- Todorcevic S., Topics in Topology, Lecture Notes in Math. 1652, Springer, Berlin, 1997. Zbl0953.54001MR1442262
- SPM Bulletin 9 (B. Tsaban, Ed.), http://arxiv.org/abs/math.GN/0406411, .
- Tsaban B., The combinatorics of splittability, Ann. Pure Appl. Logic 129 (2004), 107-130; http://arxiv.org/abs/math.GN/0307225. (2004) Zbl1067.03055MR2078361
- Tsaban B., The Hurewicz covering property and slaloms in the Baire space, Fund. Math. 181 (2004), 273-280; http://arxiv.org/abs/math.GN/0301085. (2004) Zbl1056.54028MR2099604
- Tsaban B., Selection principles in mathematics: A milestone of open problems, Note Math. 22 2 (2003/2004), 179-208; http://arxiv.org/abs/math.GN/0312182. (2003/2004) MR2112739
- Tsaban B., Some new directions in infinite-combinatorial topology, to appear in Topics in Set Theory and its Applications (J. Bagaria and S. Todorcevic, Eds.), Birkhäuser, 2005; http://arxiv.org/abs/math.GN/0409069. Zbl1113.54002MR2267150
- Vaughan J., Small uncountable cardinals and topology, in Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp.197-216. MR1078636
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.