A semifilter approach to selection principles II: -covers
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 3, page 539-547
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZdomsky, Lubomyr. "A semifilter approach to selection principles II: $\tau ^\ast $-covers." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 539-547. <http://eudml.org/doc/249868>.
@article{Zdomsky2006,
abstract = {Developing the idea of assigning to a large cover of a topological space a corresponding semifilter, we show that every Menger topological space has the property $\bigcup _\{\operatorname\{fin\}\}(\mathcal \{O\}, \operatorname\{T\}^\ast )$ provided $(\mathfrak \{u\}<\mathfrak \{g\})$, and every space with the property $\bigcup _\{\operatorname\{fin\}\}(\mathcal \{O\}, \operatorname\{T\}^\ast )$ is Hurewicz provided $(\operatorname\{Depth\}^+([\omega ]^\{\aleph _0\})\le \mathfrak \{b\})$. Combining this with the results proven in cited literature, we settle all questions whether (it is consistent that) the properties $\text\{P\}$ and $\text\{Q\}$ [do not] coincide, where $\text\{P\}$ and $\text\{Q\}$ run over $\bigcup _\{\operatorname\{fin\}\}(\mathcal \{O\},\Gamma )$, $\bigcup _\{\operatorname\{fin\}\}(\mathcal \{O\}, \operatorname\{T\})$, $\bigcup _\{\operatorname\{fin\}\}(\mathcal \{O\}, \operatorname\{T\}^\ast )$, $\bigcup _\{\operatorname\{fin\}\}(\mathcal \{O\}, \Omega )$, and $\bigcup _\{\operatorname\{fin\}\}(\mathcal \{O\}, \mathcal \{O\})$.},
author = {Zdomsky, Lubomyr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {selection principle; semifilter; small cardinals; selection principle; semifilter; small cardinals},
language = {eng},
number = {3},
pages = {539-547},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A semifilter approach to selection principles II: $\tau ^\ast $-covers},
url = {http://eudml.org/doc/249868},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Zdomsky, Lubomyr
TI - A semifilter approach to selection principles II: $\tau ^\ast $-covers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 539
EP - 547
AB - Developing the idea of assigning to a large cover of a topological space a corresponding semifilter, we show that every Menger topological space has the property $\bigcup _{\operatorname{fin}}(\mathcal {O}, \operatorname{T}^\ast )$ provided $(\mathfrak {u}<\mathfrak {g})$, and every space with the property $\bigcup _{\operatorname{fin}}(\mathcal {O}, \operatorname{T}^\ast )$ is Hurewicz provided $(\operatorname{Depth}^+([\omega ]^{\aleph _0})\le \mathfrak {b})$. Combining this with the results proven in cited literature, we settle all questions whether (it is consistent that) the properties $\text{P}$ and $\text{Q}$ [do not] coincide, where $\text{P}$ and $\text{Q}$ run over $\bigcup _{\operatorname{fin}}(\mathcal {O},\Gamma )$, $\bigcup _{\operatorname{fin}}(\mathcal {O}, \operatorname{T})$, $\bigcup _{\operatorname{fin}}(\mathcal {O}, \operatorname{T}^\ast )$, $\bigcup _{\operatorname{fin}}(\mathcal {O}, \Omega )$, and $\bigcup _{\operatorname{fin}}(\mathcal {O}, \mathcal {O})$.
LA - eng
KW - selection principle; semifilter; small cardinals; selection principle; semifilter; small cardinals
UR - http://eudml.org/doc/249868
ER -
References
top- Banakh T., Zdomsky L., Coherence of semifilters; http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/ booksite.html, .
- Banakh T., Zdomsky L., Selection principles and infinite games on multicovered spaces and their applications, in preparation.
- Bartoszyński T., Shelah S., Tsaban B., Additivity properties of topological diagonalizations, J. Symbolic Logic 68 (2003), 1254-1260; (Full version: http://arxiv.org/abs/math.LO/0112262). (2003) Zbl1071.03031MR2017353
- Blass A., Combinatorial cardinal characteristics of the continuum, in Handbook of Set Theory (M. Foreman et al., Eds.), to appear. MR2768685
- Chaber J., Pol R., A remark on Fremlin-Miller theorem concerning the Menger property and Michael concentrated sets, preprint.
- Dordal P., A model in which the base-matrix tree cannot have cofinal branches, J. Symbolic Logic 52 (1987), 651-664. (1987) Zbl0637.03049MR0902981
- Dow A., Set theory in topology, in Recent Progress in General Topology (M. Hušek et al., Eds.), Elsevier Sci. Publ., Amsterdam, 1992, pp.168-197. Zbl0796.54001MR1229125
- Miller A., Fremlin D., On some properties of Hurewicz, Menger, and Rothberger, Fund. Math. 129 (1988), 17-33. (1988) Zbl0665.54026MR0954892
- Gerlits J., Nagy Zs., Some properties of , I, Topology Appl. 14 2 (1982), 151-1613. (1982) Zbl0503.54020MR0667661
- Hurewicz W., Über die Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421. (1925)
- Just W., Miller A., Scheepers M., Szeptycki S., The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266. (1996) Zbl0870.03021MR1419798
- Laflamme C., Equivalence of families of functions on natural numbers, Trans. Amer. Math. Soc. 330 (1992), 307-319. (1992) MR1028761
- Marczewski E. (Szpilrajn), The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938), 207-233. (1938)
- Menger K., Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte, Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) 133 (1924), 421-444.
- Scheepers M., Combinatorics of open covers I: Ramsey Theory, Topology Appl. 69 (1996), 31-62. (1996) Zbl0848.54018MR1378387
- Shelah S., Tsaban B., Critical cardinalities and additivity properties of combinatorial notions of smallness, J. Appl. Anal. 9 (2003), 149-162; http://arxiv.org/abs/math.LO/0304019. (2003) Zbl1052.03026MR2021285
- Solomon R., Families of sets and functions, Czechoslovak Math. J. 27 (1977), 556-559. (1977) Zbl0383.04002MR0457218
- Talagrand M., Filtres: Mesurabilité, rapidité, propriété de Baire forte, Studia Math. 74 (1982), 283-291. (1982) MR0683750
- Tsaban B., Selection principles and the minimal tower problem, Note Mat. 22 2 (2003), 53-81; http://arxiv.org/abs/math.LO/0105045. (2003) MR2112731
- Tsaban B. (eds.), [unknown], SPM Bulletin 3 (2003; http://arxiv.org/abs/math.GN/0303057). (2003; http://arxiv.org/abs/math.GN/0303057) Zbl1071.03031
- Tsaban B., Zdomsky L., Scales, fields, and a problem of Hurewicz, submitted to J. Amer. Math. Soc.; http://arxiv.org/abs/math.GN/0507043. MR2421163
- Vaughan J., Small uncountable cardinals and topology, in Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp.195-218. MR1078647
- Zdomsky L., A semifilter approach to selection principles, Comment. Math. Univ. Carolin. 46 (2005), 525-539; http://arxiv.org/abs/math.GN/0412498. (2005) Zbl1121.03060MR2174530
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.