Combinatorial trees in Priestley spaces
Richard N. Ball; Aleš Pultr; Jiří Sichler
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 2, page 217-234
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBall, Richard N., Pultr, Aleš, and Sichler, Jiří. "Combinatorial trees in Priestley spaces." Commentationes Mathematicae Universitatis Carolinae 46.2 (2005): 217-234. <http://eudml.org/doc/249533>.
@article{Ball2005,
abstract = {We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting $n$-crowns with $n\ge 3$ does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.},
author = {Ball, Richard N., Pultr, Aleš, Sichler, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {distributive lattice; Priestley duality; poset; first-order definable; distributive lattice; Priestley duality; poset},
language = {eng},
number = {2},
pages = {217-234},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Combinatorial trees in Priestley spaces},
url = {http://eudml.org/doc/249533},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Ball, Richard N.
AU - Pultr, Aleš
AU - Sichler, Jiří
TI - Combinatorial trees in Priestley spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 2
SP - 217
EP - 234
AB - We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting $n$-crowns with $n\ge 3$ does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.
LA - eng
KW - distributive lattice; Priestley duality; poset; first-order definable; distributive lattice; Priestley duality; poset
UR - http://eudml.org/doc/249533
ER -
References
top- Adams M.E., Beazer R., Congruence properties of distributive double -algebras, Czechoslovak Math. J. 41 (1991), 395-404. (1991) Zbl0758.06008MR1117792
- Adámek J., Herrlich H., Strecker G., Abstract and concrete categories, Wiley Interscience, New York, 1990. MR1051419
- Ball R.N., Pultr A., Forbidden Forests in Priestley Spaces, Cahiers Topologie Géom. Différentielle Catég. 45 1 (2004), 2-22. (2004) Zbl1062.06020MR2040660
- Ball R.N., Pultr A., Sichler J., Priestley configurations and Heyting varieties, submitted for publication. Zbl1165.06003
- Ball R.N., Pultr A., Sichler J., Configurations in coproducts of Priestley spaces, to appear in Appl. Categ. Structures. Zbl1086.06012MR2141593
- Burris S., Sankappanavar H.P., A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer, New York-Heidelberg-Berlin, 1981. Zbl0478.08001MR0648287
- Davey B.A., Priestley H.A., Introduction to Lattices and Order, second edition, Cambridge University Press, New York, 2001. Zbl1002.06001MR1902334
- Koubek V., Sichler J., On Priestley duals of products, Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 243-256. (1991) Zbl0774.06006MR1158110
- Łoś J., Quelques remarques, théorèmes et problèmes sur les classes définisables d'algèbres, Mathematical interpretation of formal systems, North-Holland, Amsterdam, 1955, pp.98-113.
- Monteiro A., L'arithmetique des filtres et les espaces topologiques, I, II, Notas de Lógica Matemática (1974), 29-30. (1974) Zbl0318.06019
- Priestley H.A., Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. (1970) Zbl0201.01802MR0265242
- Priestley H.A., Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 324 (1972), 507-530. (1972) Zbl0323.06011MR0300949
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.