Forbidden forests in Priestley spaces

Richard N. Ball; Aleš Pultr

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)

  • Volume: 45, Issue: 1, page 2-22
  • ISSN: 1245-530X

How to cite

top

Ball, Richard N., and Pultr, Aleš. "Forbidden forests in Priestley spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.1 (2004): 2-22. <http://eudml.org/doc/91676>.

@article{Ball2004,
author = {Ball, Richard N., Pultr, Aleš},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {distributive lattice; Priestley duality},
language = {eng},
number = {1},
pages = {2-22},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Forbidden forests in Priestley spaces},
url = {http://eudml.org/doc/91676},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Ball, Richard N.
AU - Pultr, Aleš
TI - Forbidden forests in Priestley spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 1
SP - 2
EP - 22
LA - eng
KW - distributive lattice; Priestley duality
UR - http://eudml.org/doc/91676
ER -

References

top
  1. [1] M.E. Adams and R. Beazer, Congruence properties of distributive double p-algebras, Czechoslovak Math.J.41 (1991), 395-404. Zbl0758.06009MR1117792
  2. [2] B. Banaschewski and A. Pultr, Variants of openness, Applied Categorical Structures2 (1994),331-350. Zbl0810.54017MR1300720
  3. [3] M. Darnel, Theory of Lattice-Ordered Groups, Pure and Applied Mathematics187, Marcel Dekker, Inc., 1995. Zbl0810.06016MR1304052
  4. [4] J.B. Hart and C. Tsinakis, Decompositions for relatively normal lattices, Trans. Amer. Math. Soc.3412 (1994), 519-548. Zbl0799.06019MR1211409
  5. [5] M. Henriksen, J. Vermeer, R.G. Woods, Wallman covers of compact spaces, Dissertationes Mat.(Rozprawy Mat.) 280 (1989), 34pp. Zbl0719.54033MR997373
  6. [6] M. Mandelker, Relative annihilators in lattices, Duke Math. J.37 (1970) 377-386. Zbl0206.29701MR256951
  7. [7] A. Monteiro, L'arithmetique des filtres et les espaces topologiques, De Segundo Symposium de Matematicas-Villavicencio (Mendoza, Buenos Aires), 1954, pp. 129-162. Zbl0058.38503MR74805
  8. [8] A. Monteiro, L'arithmetique des filtres et les espaces topologiques, I, II, Notas Lógica Mat. (1974), 29-30. Zbl0318.06019
  9. [9] H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc.2 (1970), 186-190. Zbl0201.01802MR265242
  10. [10] H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc.324 (1972), 507-530. Zbl0323.06011MR300949
  11. [11] J.T. Snodgrass and C. Tsinakis, Finite-valued algebraic lattices, Algebra Universalis30 (1993), 311-318. Zbl0806.06011MR1225870
  12. [12] J.T. Snodgrass and C. Tsinakis, The finite basis theorem for relatively normal lattices, Algebra Universalis33 (1995), 40-67. Zbl0819.06009MR1303631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.