Singular Dirichlet boundary value problems. II: Resonance case

Donal O'Regan

Czechoslovak Mathematical Journal (1998)

  • Volume: 48, Issue: 2, page 269-289
  • ISSN: 0011-4642

Abstract

top
Existence results are established for the resonant problem y ' ' + λ m a y = f ( t , y ) a.e. on [ 0 , 1 ] with y satisfying Dirichlet boundary conditions. The problem is singular since f is a Carathéodory function, a L l o c 1 ( 0 , 1 ) with a > 0 a.e. on [ 0 , 1 ] and 0 1 x ( 1 - x ) a ( x ) d x < .

How to cite

top

O'Regan, Donal. "Singular Dirichlet boundary value problems. II: Resonance case." Czechoslovak Mathematical Journal 48.2 (1998): 269-289. <http://eudml.org/doc/30418>.

@article{ORegan1998,
abstract = {Existence results are established for the resonant problem $y^\{\prime \prime \}+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_\{\{\mathrm \{l\}oc\}\}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm \{d\}x <\infty $.},
author = {O'Regan, Donal},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear boundary value problem; singular problem; second-order nonlinear differential equation; Dirichlet problem; resonance case},
language = {eng},
number = {2},
pages = {269-289},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Singular Dirichlet boundary value problems. II: Resonance case},
url = {http://eudml.org/doc/30418},
volume = {48},
year = {1998},
}

TY - JOUR
AU - O'Regan, Donal
TI - Singular Dirichlet boundary value problems. II: Resonance case
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 2
SP - 269
EP - 289
AB - Existence results are established for the resonant problem $y^{\prime \prime }+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_{{\mathrm {l}oc}}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm {d}x <\infty $.
LA - eng
KW - nonlinear boundary value problem; singular problem; second-order nonlinear differential equation; Dirichlet problem; resonance case
UR - http://eudml.org/doc/30418
ER -

References

top
  1. Discrete and continuous boundary problems, (1964), Academic Press, New York. (1964) Zbl0117.05806MR0176141
  2. 10.1006/jmaa.1994.1199, Jour. Math. Anal. Appl. 184 (1994), 263–284. (1994) MR1278388DOI10.1006/jmaa.1994.1199
  3. 10.1080/00036818608839643, Appl. Anal. 23 (1986), 233–243. (1986) MR0870490DOI10.1080/00036818608839643
  4. 10.1112/jlms/s2-27.1.106, J. London Math. Soc. 27 (1983), 106–120. (1983) MR0686509DOI10.1112/jlms/s2-27.1.106
  5. 10.1006/jmaa.1994.1052, J. Math. Anal. Appl. 181 (1994), 684–700. (1994) MR1264540DOI10.1006/jmaa.1994.1052
  6. 10.1016/0022-0396(87)90121-5, Jour. Diff. Eq. 69 (1987), 289–309. (1987) MR0903389DOI10.1016/0022-0396(87)90121-5
  7. Topological degree methods in nonlinear boundary value problems, AMS Regional Conf. Series in Math. 40, Providence, 1978. (1978) MR0525202
  8. 10.1216/RMJ-1982-12-4-643, Rocky M.J. Math. 112 (1982), 643–654. (1982) DOI10.1216/RMJ-1982-12-4-643
  9. Linear differential operators, Part II, Ungar Publ. Co., London, 1968. (1968) Zbl0227.34020MR0262880
  10. Theory of singular boundary value problems, World Scientific Press, Singapore, 1994. (1994) 
  11. Existence principles and theory for singular Dirichlet boundary value problems, Diff. Eqms. and Dynamical Systems 3 (1995), 289–304. (1995) MR1386750
  12. 10.1016/S0362-546X(96)00026-0, Nonlinear Analysis 29 (1997), 221–245. (1997) MR1446226DOI10.1016/S0362-546X(96)00026-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.