Singular Dirichlet boundary value problems. II: Resonance case
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 2, page 269-289
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topO'Regan, Donal. "Singular Dirichlet boundary value problems. II: Resonance case." Czechoslovak Mathematical Journal 48.2 (1998): 269-289. <http://eudml.org/doc/30418>.
@article{ORegan1998,
abstract = {Existence results are established for the resonant problem $y^\{\prime \prime \}+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_\{\{\mathrm \{l\}oc\}\}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm \{d\}x <\infty $.},
author = {O'Regan, Donal},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear boundary value problem; singular problem; second-order nonlinear differential equation; Dirichlet problem; resonance case},
language = {eng},
number = {2},
pages = {269-289},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Singular Dirichlet boundary value problems. II: Resonance case},
url = {http://eudml.org/doc/30418},
volume = {48},
year = {1998},
}
TY - JOUR
AU - O'Regan, Donal
TI - Singular Dirichlet boundary value problems. II: Resonance case
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 2
SP - 269
EP - 289
AB - Existence results are established for the resonant problem $y^{\prime \prime }+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_{{\mathrm {l}oc}}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm {d}x <\infty $.
LA - eng
KW - nonlinear boundary value problem; singular problem; second-order nonlinear differential equation; Dirichlet problem; resonance case
UR - http://eudml.org/doc/30418
ER -
References
top- Discrete and continuous boundary problems, (1964), Academic Press, New York. (1964) Zbl0117.05806MR0176141
- 10.1006/jmaa.1994.1199, Jour. Math. Anal. Appl. 184 (1994), 263–284. (1994) MR1278388DOI10.1006/jmaa.1994.1199
- 10.1080/00036818608839643, Appl. Anal. 23 (1986), 233–243. (1986) MR0870490DOI10.1080/00036818608839643
- 10.1112/jlms/s2-27.1.106, J. London Math. Soc. 27 (1983), 106–120. (1983) MR0686509DOI10.1112/jlms/s2-27.1.106
- 10.1006/jmaa.1994.1052, J. Math. Anal. Appl. 181 (1994), 684–700. (1994) MR1264540DOI10.1006/jmaa.1994.1052
- 10.1016/0022-0396(87)90121-5, Jour. Diff. Eq. 69 (1987), 289–309. (1987) MR0903389DOI10.1016/0022-0396(87)90121-5
- Topological degree methods in nonlinear boundary value problems, AMS Regional Conf. Series in Math. 40, Providence, 1978. (1978) MR0525202
- 10.1216/RMJ-1982-12-4-643, Rocky M.J. Math. 112 (1982), 643–654. (1982) DOI10.1216/RMJ-1982-12-4-643
- Linear differential operators, Part II, Ungar Publ. Co., London, 1968. (1968) Zbl0227.34020MR0262880
- Theory of singular boundary value problems, World Scientific Press, Singapore, 1994. (1994)
- Existence principles and theory for singular Dirichlet boundary value problems, Diff. Eqms. and Dynamical Systems 3 (1995), 289–304. (1995) MR1386750
- 10.1016/S0362-546X(96)00026-0, Nonlinear Analysis 29 (1997), 221–245. (1997) MR1446226DOI10.1016/S0362-546X(96)00026-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.