On the number of prime factors of summands of partitions

Cécile Dartyge[1]; András Sárközy[2]; Mihály Szalay[2]

  • [1] Institut Élie Cartan Université Henri Poincaré–Nancy 1 BP 239 54506 Vandœuvre Cedex, France
  • [2] Department of Algebra and Number Theory Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C, Hungary

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 1, page 73-87
  • ISSN: 1246-7405

Abstract

top
We present various results on the number of prime factors of the parts of a partition of an integer. We study the parity of this number, the extremal orders and we prove a Hardy-Ramanujan type theorem. These results show that for almost all partitions of an integer the sequence of the parts satisfies similar arithmetic properties as the sequence of natural numbers.

How to cite

top

Dartyge, Cécile, Sárközy, András, and Szalay, Mihály. "On the number of prime factors of summands of partitions." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 73-87. <http://eudml.org/doc/249636>.

@article{Dartyge2006,
abstract = {We present various results on the number of prime factors of the parts of a partition of an integer. We study the parity of this number, the extremal orders and we prove a Hardy-Ramanujan type theorem. These results show that for almost all partitions of an integer the sequence of the parts satisfies similar arithmetic properties as the sequence of natural numbers.},
affiliation = {Institut Élie Cartan Université Henri Poincaré–Nancy 1 BP 239 54506 Vandœuvre Cedex, France; Department of Algebra and Number Theory Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C, Hungary; Department of Algebra and Number Theory Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C, Hungary},
author = {Dartyge, Cécile, Sárközy, András, Szalay, Mihály},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {partitions; prime factors; Liouville function},
language = {eng},
number = {1},
pages = {73-87},
publisher = {Université Bordeaux 1},
title = {On the number of prime factors of summands of partitions},
url = {http://eudml.org/doc/249636},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Dartyge, Cécile
AU - Sárközy, András
AU - Szalay, Mihály
TI - On the number of prime factors of summands of partitions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 73
EP - 87
AB - We present various results on the number of prime factors of the parts of a partition of an integer. We study the parity of this number, the extremal orders and we prove a Hardy-Ramanujan type theorem. These results show that for almost all partitions of an integer the sequence of the parts satisfies similar arithmetic properties as the sequence of natural numbers.
LA - eng
KW - partitions; prime factors; Liouville function
UR - http://eudml.org/doc/249636
ER -

References

top
  1. C. Dartyge, A. Sárközy, M. Szalay, On the distribution of the summands of partitions in residue classes. Acta Math. Hungar. 109 (2005), 215–237. Zbl1119.11061MR2187286
  2. P. Erdős, J. Lehner, The distribution of the number of summands in the partitions of a positive integer. Duke Math. Journal 8 (1941), 335–345. Zbl0025.10703MR4841
  3. M. Szalay, P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group II. Acta Math. Acad. Sci. Hungar. 29 (1977), 381–392. Zbl0371.10034MR506109
  4. M. Szalay, P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group III. Acta Math. Acad. Sci. Hungar. 32 (1978), 129–155. Zbl0391.10031MR505078
  5. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2e édition. Cours spécialisés no 1, Société mathématique de France (1995). Zbl0880.11001MR1366197

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.