On the number of prime factors of summands of partitions
Cécile Dartyge[1]; András Sárközy[2]; Mihály Szalay[2]
- [1] Institut Élie Cartan Université Henri Poincaré–Nancy 1 BP 239 54506 Vandœuvre Cedex, France
- [2] Department of Algebra and Number Theory Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C, Hungary
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 1, page 73-87
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDartyge, Cécile, Sárközy, András, and Szalay, Mihály. "On the number of prime factors of summands of partitions." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 73-87. <http://eudml.org/doc/249636>.
@article{Dartyge2006,
abstract = {We present various results on the number of prime factors of the parts of a partition of an integer. We study the parity of this number, the extremal orders and we prove a Hardy-Ramanujan type theorem. These results show that for almost all partitions of an integer the sequence of the parts satisfies similar arithmetic properties as the sequence of natural numbers.},
affiliation = {Institut Élie Cartan Université Henri Poincaré–Nancy 1 BP 239 54506 Vandœuvre Cedex, France; Department of Algebra and Number Theory Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C, Hungary; Department of Algebra and Number Theory Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C, Hungary},
author = {Dartyge, Cécile, Sárközy, András, Szalay, Mihály},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {partitions; prime factors; Liouville function},
language = {eng},
number = {1},
pages = {73-87},
publisher = {Université Bordeaux 1},
title = {On the number of prime factors of summands of partitions},
url = {http://eudml.org/doc/249636},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Dartyge, Cécile
AU - Sárközy, András
AU - Szalay, Mihály
TI - On the number of prime factors of summands of partitions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 73
EP - 87
AB - We present various results on the number of prime factors of the parts of a partition of an integer. We study the parity of this number, the extremal orders and we prove a Hardy-Ramanujan type theorem. These results show that for almost all partitions of an integer the sequence of the parts satisfies similar arithmetic properties as the sequence of natural numbers.
LA - eng
KW - partitions; prime factors; Liouville function
UR - http://eudml.org/doc/249636
ER -
References
top- C. Dartyge, A. Sárközy, M. Szalay, On the distribution of the summands of partitions in residue classes. Acta Math. Hungar. 109 (2005), 215–237. Zbl1119.11061MR2187286
- P. Erdős, J. Lehner, The distribution of the number of summands in the partitions of a positive integer. Duke Math. Journal 8 (1941), 335–345. Zbl0025.10703MR4841
- M. Szalay, P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group II. Acta Math. Acad. Sci. Hungar. 29 (1977), 381–392. Zbl0371.10034MR506109
- M. Szalay, P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group III. Acta Math. Acad. Sci. Hungar. 32 (1978), 129–155. Zbl0391.10031MR505078
- G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2e édition. Cours spécialisés no 1, Société mathématique de France (1995). Zbl0880.11001MR1366197
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.