The equation
- [1] University of British Columbia 1984 Mathematics Road Vancouver, B.C. Canada
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 315-321
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBennett, Michael A.. "The equation $x^{2n}+y^{2n}=z^5$." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 315-321. <http://eudml.org/doc/249644>.
@article{Bennett2006,
abstract = {We show that the Diophantine equation of the title has, for $n > 1$, no solution in coprime nonzero integers $x, y$ and $z$. Our proof relies upon Frey curves and related results on the modularity of Galois representations.},
affiliation = {University of British Columbia 1984 Mathematics Road Vancouver, B.C. Canada},
author = {Bennett, Michael A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {higher degree Diophantine equations; Galois representations; elliptic curves},
language = {eng},
number = {2},
pages = {315-321},
publisher = {Université Bordeaux 1},
title = {The equation $x^\{2n\}+y^\{2n\}=z^5$},
url = {http://eudml.org/doc/249644},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Bennett, Michael A.
TI - The equation $x^{2n}+y^{2n}=z^5$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 315
EP - 321
AB - We show that the Diophantine equation of the title has, for $n > 1$, no solution in coprime nonzero integers $x, y$ and $z$. Our proof relies upon Frey curves and related results on the modularity of Galois representations.
LA - eng
KW - higher degree Diophantine equations; Galois representations; elliptic curves
UR - http://eudml.org/doc/249644
ER -
References
top- A. Battaglia, Impossibilità dell’equazione indeterminata . Archimede 20 (1968), 300–305. Zbl0185.10803MR240051
- M.A. Bennett, C. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56 (2004), 23–54. Zbl1053.11025MR2031121
- N. Bruin, On powers as sums of two cubes. Algorithmic number theory (Leiden, 2000), 169–184, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000. Zbl0986.11021MR1850605
- J. Cremona, Algorithms for Modular Elliptic Curves. Cambridge University Press, 1992. Zbl0758.14042MR1201151
- H. Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last theorem. Duke. Math. J. 102 (2000), 413–449. Zbl1008.11023MR1756104
- H. Darmon, A. Granville, On the equations and . Bull. London Math. Soc. 27 (1995), 513–543. Zbl0838.11023MR1348707
- H. Darmon, L. Merel, Winding quotients and some variants of Fermat’s Last Theorem. J. Reine Angew Math. 490 (1997), 81–100. Zbl0976.11017MR1468926
- J. S. Ellenberg, Galois representations attached to -curves and the generalized Fermat equation . Amer. J. Math. 126 (2004), 763–787. Zbl1059.11041MR2075481
- A. Kraus, Majorations effectives pour l’équation de Fermat généralisée. Canad. J. Math. 49 (1997), 1139–1161. Zbl0908.11017MR1611640
- A. Kraus, On the equation : a survey. Ramanujan J. 3 (1999), 315–333. Zbl0939.11016MR1714945
- R.D. Mauldin, A generalization of Fermat’s last theorem: the Beal conjecture and prize problem. Notices Amer. Math. Soc. 44 (1997), 1436–1437. Zbl0924.11022MR1488570
- L. Merel, Arithmetic of elliptic curves and Diophantine equations. J. Théor. Nombres Bordeaux 11 (1999), 173–200. Zbl0964.11028MR1730439
- K. Ribet, On modular representations of arising from modular forms. Invent. Math. 100 (1990), 431–476. Zbl0773.11039MR1047143
- W. Stein, Modular forms database. http://modular.fas.harvard.edu/Tables/
- A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), 443–551. Zbl0823.11029MR1333035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.