The equation x 2 n + y 2 n = z 5

Michael A. Bennett[1]

  • [1] University of British Columbia 1984 Mathematics Road Vancouver, B.C. Canada

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 2, page 315-321
  • ISSN: 1246-7405

Abstract

top
We show that the Diophantine equation of the title has, for n > 1 , no solution in coprime nonzero integers x , y and z . Our proof relies upon Frey curves and related results on the modularity of Galois representations.

How to cite

top

Bennett, Michael A.. "The equation $x^{2n}+y^{2n}=z^5$." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 315-321. <http://eudml.org/doc/249644>.

@article{Bennett2006,
abstract = {We show that the Diophantine equation of the title has, for $n &gt; 1$, no solution in coprime nonzero integers $x, y$ and $z$. Our proof relies upon Frey curves and related results on the modularity of Galois representations.},
affiliation = {University of British Columbia 1984 Mathematics Road Vancouver, B.C. Canada},
author = {Bennett, Michael A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {higher degree Diophantine equations; Galois representations; elliptic curves},
language = {eng},
number = {2},
pages = {315-321},
publisher = {Université Bordeaux 1},
title = {The equation $x^\{2n\}+y^\{2n\}=z^5$},
url = {http://eudml.org/doc/249644},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Bennett, Michael A.
TI - The equation $x^{2n}+y^{2n}=z^5$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 315
EP - 321
AB - We show that the Diophantine equation of the title has, for $n &gt; 1$, no solution in coprime nonzero integers $x, y$ and $z$. Our proof relies upon Frey curves and related results on the modularity of Galois representations.
LA - eng
KW - higher degree Diophantine equations; Galois representations; elliptic curves
UR - http://eudml.org/doc/249644
ER -

References

top
  1. A. Battaglia, Impossibilità dell’equazione indeterminata x 2 n + y 2 n = z 5 . Archimede 20 (1968), 300–305. Zbl0185.10803MR240051
  2. M.A. Bennett, C. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56 (2004), 23–54. Zbl1053.11025MR2031121
  3. N. Bruin, On powers as sums of two cubes. Algorithmic number theory (Leiden, 2000), 169–184, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000. Zbl0986.11021MR1850605
  4. J. Cremona, Algorithms for Modular Elliptic Curves. Cambridge University Press, 1992. Zbl0758.14042MR1201151
  5. H. Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last theorem. Duke. Math. J. 102 (2000), 413–449. Zbl1008.11023MR1756104
  6. H. Darmon, A. Granville, On the equations z m = F ( x , y ) and A x p + B y q = C z r . Bull. London Math. Soc. 27 (1995), 513–543. Zbl0838.11023MR1348707
  7. H. Darmon, L. Merel, Winding quotients and some variants of Fermat’s Last Theorem. J. Reine Angew Math. 490 (1997), 81–100. Zbl0976.11017MR1468926
  8. J. S. Ellenberg, Galois representations attached to -curves and the generalized Fermat equation A 4 + B 2 = C p . Amer. J. Math. 126 (2004), 763–787. Zbl1059.11041MR2075481
  9. A. Kraus, Majorations effectives pour l’équation de Fermat généralisée. Canad. J. Math. 49 (1997), 1139–1161. Zbl0908.11017MR1611640
  10. A. Kraus, On the equation x p + y q = z r : a survey. Ramanujan J. 3 (1999), 315–333. Zbl0939.11016MR1714945
  11. R.D. Mauldin, A generalization of Fermat’s last theorem: the Beal conjecture and prize problem. Notices Amer. Math. Soc. 44 (1997), 1436–1437. Zbl0924.11022MR1488570
  12. L. Merel, Arithmetic of elliptic curves and Diophantine equations. J. Théor. Nombres Bordeaux 11 (1999), 173–200. Zbl0964.11028MR1730439
  13. K. Ribet, On modular representations of G a l ( ¯ / ) arising from modular forms. Invent. Math. 100 (1990), 431–476. Zbl0773.11039MR1047143
  14. W. Stein, Modular forms database. http://modular.fas.harvard.edu/Tables/ 
  15. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), 443–551. Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.