Fundamental units in a parametric family of not totally real quintic number fields

Andreas M. Schöpp[1]

  • [1] Technische Universität Berlin Straße des 17. Juni 136, 10623 Berlin, Germany

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 3, page 693-706
  • ISSN: 1246-7405

Abstract

top
In this article we compute fundamental units for a family of number fields generated by a parametric polynomial of degree 5 with signature ( 1 , 2 ) and Galois group D 5 .

How to cite

top

Schöpp, Andreas M.. "Fundamental units in a parametric family of not totally real quintic number fields." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 693-706. <http://eudml.org/doc/249651>.

@article{Schöpp2006,
abstract = {In this article we compute fundamental units for a family of number fields generated by a parametric polynomial of degree 5 with signature $(1,2)$ and Galois group $D_5$.},
affiliation = {Technische Universität Berlin Straße des 17. Juni 136, 10623 Berlin, Germany},
author = {Schöpp, Andreas M.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quintic number field; parametric polynomial of degree 5; system of fundamental units},
language = {eng},
number = {3},
pages = {693-706},
publisher = {Université Bordeaux 1},
title = {Fundamental units in a parametric family of not totally real quintic number fields},
url = {http://eudml.org/doc/249651},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Schöpp, Andreas M.
TI - Fundamental units in a parametric family of not totally real quintic number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 693
EP - 706
AB - In this article we compute fundamental units for a family of number fields generated by a parametric polynomial of degree 5 with signature $(1,2)$ and Galois group $D_5$.
LA - eng
KW - quintic number field; parametric polynomial of degree 5; system of fundamental units
UR - http://eudml.org/doc/249651
ER -

References

top
  1. H. Cohen, A Course in Computational Algebraic Number Theory. (Graduate Texts in Mathematics 138), Springer, 1993. Zbl0786.11071MR1228206
  2. G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 22 (1958), 92–97. Zbl0079.05803MR92824
  3. G. Frei, Fundamental systems of units in number fields Q ( D 2 + d , D 2 + 4 d ) with d | D . Arch. Math. (Basel) 36.2 (1981), 137–144. Zbl0461.12005MR619430
  4. K. Geissler, Berechnung von Galoisgruppen über Zahl- und Funktionenkörpern. Thesis TU Berlin (2003). 
  5. KANT: http://www.math.tu-berlin.de/~kant Zbl0886.11070
  6. S. Katayama, The a b c conjecture, fundamental units and the simultaneous Pell equations. Proc. Jangieon Math. Soc. 1 (2000), 19–26. Zbl1146.11310MR1791804
  7. O. Kihel, Groupe des unités pour des extensions diédrales complexes de degré 10 sur . J. Théor. Nombres Bordx. 13.2 (2001), 469–482. Zbl1012.11096MR1879669
  8. Y. Kishi, A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102.1 (2003), 90–106. Zbl1034.11060MR1994474
  9. F. Leprévost, M.E. Pohst, A.M. Schöpp, Familles de polynômes liées aux courbes modulaires X 0 ( l ) unicursales et points rationnels non-triviaux de courbes elliptiques quotient. Acta Arith. 110.4 (2003), 401–410. Zbl1126.11321MR2011317
  10. F. Leprévost, M.E. Pohst, A.M. Schöpp, Units in some parametric families of quartic fields. To appear in Acta Arithm. (2007). Zbl1116.11090MR2310343
  11. MAGMA: http://magma.maths.usyd.edu.au Zbl1222.11001
  12. E. Maus, Zur Arithmetik einiger Serien nichtauflösbarer Gleichungen 5. Grades. Abh. Math. Semin. Univ. Hamb. 54 (1984), 227–250. Zbl0549.12004MR780251
  13. K. Nakamula, Certain Quartic Fields with Small Regulators J. Number Theory 57 (1996), 1–21. Zbl0847.11057MR1378570
  14. N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik 55), Dt. Verlag der Wissenschaften, 1963. Zbl0156.28202MR164003
  15. M.E. Pohst, H.J. Zassenhaus, Algorithmic algebraic number theory, (Encyclopedia of Mathematics and its applications), Cambridge University Press, 1997. Zbl0685.12001MR1483321
  16. A.M. Schöpp, Über Torsionspunkte elliptischer und hyperelliptischer Kurven nebst Anwendungen. Thesis TU Berlin (2005). 
  17. R. Schoof, L.C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comput. 50.182 (1988), 543–556. Zbl0649.12007MR929552
  18. Y.-Y. Shen, Unit groups and class numbers of real cyclic octic fields. Trans. Am. Math. Soc. 326.1 (1991), 179–209. Zbl0738.11055MR1031243
  19. H.-J. Stender, Einheiten für eine allgemeine Klasse total reeller algebraischer Zahlkörper. J. Reine Angew. Math. 257 (1972), 151–178. Zbl0247.12008MR319941
  20. H.-J. Stender, Grundeinheiten für einige unendliche Klassen reiner biquadratischer Zahlkörper mit einer Anwendung auf die diophantische Gleichung x 4 - a y 4 = ± c ( c = 1 , 2 , 4 oder 8 ) . J. Reine Angew. Math. 264 (1973), 207–220. Zbl0272.12006MR332714
  21. H.-J. Stender, Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades. J. Number Theory 7 (1975), 235–250. Zbl0308.12001MR369317
  22. H.-J. Stender, ”Verstümmelte” Grundeinheiten für biquadratische und bikubische Zahlkörper. Math. Ann. 232.1 (1978), 55–64. Zbl0372.12009
  23. E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. Zbl0427.12005MR546663
  24. K. Wang, X. Zhang, Fundamental unit system and class number for real number field of type (2,2,2). Tsinghua Sci. Technol. 5.2 (2000), 150–153. Zbl1137.11345MR1783796
  25. K. Wang, Fundamental unit systems and class number of real bicyclic biquadratic number fields. Proc. Japan Acad. Ser. A Math. Sci. 77.9 (2001), 147–150. Zbl1011.11071MR1869110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.