Fundamental units in a parametric family of not totally real quintic number fields
- [1] Technische Universität Berlin Straße des 17. Juni 136, 10623 Berlin, Germany
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 3, page 693-706
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSchöpp, Andreas M.. "Fundamental units in a parametric family of not totally real quintic number fields." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 693-706. <http://eudml.org/doc/249651>.
@article{Schöpp2006,
abstract = {In this article we compute fundamental units for a family of number fields generated by a parametric polynomial of degree 5 with signature $(1,2)$ and Galois group $D_5$.},
affiliation = {Technische Universität Berlin Straße des 17. Juni 136, 10623 Berlin, Germany},
author = {Schöpp, Andreas M.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quintic number field; parametric polynomial of degree 5; system of fundamental units},
language = {eng},
number = {3},
pages = {693-706},
publisher = {Université Bordeaux 1},
title = {Fundamental units in a parametric family of not totally real quintic number fields},
url = {http://eudml.org/doc/249651},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Schöpp, Andreas M.
TI - Fundamental units in a parametric family of not totally real quintic number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 693
EP - 706
AB - In this article we compute fundamental units for a family of number fields generated by a parametric polynomial of degree 5 with signature $(1,2)$ and Galois group $D_5$.
LA - eng
KW - quintic number field; parametric polynomial of degree 5; system of fundamental units
UR - http://eudml.org/doc/249651
ER -
References
top- H. Cohen, A Course in Computational Algebraic Number Theory. (Graduate Texts in Mathematics 138), Springer, 1993. Zbl0786.11071MR1228206
- G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 22 (1958), 92–97. Zbl0079.05803MR92824
- G. Frei, Fundamental systems of units in number fields with Arch. Math. (Basel) 36.2 (1981), 137–144. Zbl0461.12005MR619430
- K. Geissler, Berechnung von Galoisgruppen über Zahl- und Funktionenkörpern. Thesis TU Berlin (2003).
- KANT: http://www.math.tu-berlin.de/~kant Zbl0886.11070
- S. Katayama, The conjecture, fundamental units and the simultaneous Pell equations. Proc. Jangieon Math. Soc. 1 (2000), 19–26. Zbl1146.11310MR1791804
- O. Kihel, Groupe des unités pour des extensions diédrales complexes de degré 10 sur . J. Théor. Nombres Bordx. 13.2 (2001), 469–482. Zbl1012.11096MR1879669
- Y. Kishi, A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102.1 (2003), 90–106. Zbl1034.11060MR1994474
- F. Leprévost, M.E. Pohst, A.M. Schöpp, Familles de polynômes liées aux courbes modulaires unicursales et points rationnels non-triviaux de courbes elliptiques quotient. Acta Arith. 110.4 (2003), 401–410. Zbl1126.11321MR2011317
- F. Leprévost, M.E. Pohst, A.M. Schöpp, Units in some parametric families of quartic fields. To appear in Acta Arithm. (2007). Zbl1116.11090MR2310343
- MAGMA: http://magma.maths.usyd.edu.au Zbl1222.11001
- E. Maus, Zur Arithmetik einiger Serien nichtauflösbarer Gleichungen 5. Grades. Abh. Math. Semin. Univ. Hamb. 54 (1984), 227–250. Zbl0549.12004MR780251
- K. Nakamula, Certain Quartic Fields with Small Regulators J. Number Theory 57 (1996), 1–21. Zbl0847.11057MR1378570
- N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik 55), Dt. Verlag der Wissenschaften, 1963. Zbl0156.28202MR164003
- M.E. Pohst, H.J. Zassenhaus, Algorithmic algebraic number theory, (Encyclopedia of Mathematics and its applications), Cambridge University Press, 1997. Zbl0685.12001MR1483321
- A.M. Schöpp, Über Torsionspunkte elliptischer und hyperelliptischer Kurven nebst Anwendungen. Thesis TU Berlin (2005).
- R. Schoof, L.C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comput. 50.182 (1988), 543–556. Zbl0649.12007MR929552
- Y.-Y. Shen, Unit groups and class numbers of real cyclic octic fields. Trans. Am. Math. Soc. 326.1 (1991), 179–209. Zbl0738.11055MR1031243
- H.-J. Stender, Einheiten für eine allgemeine Klasse total reeller algebraischer Zahlkörper. J. Reine Angew. Math. 257 (1972), 151–178. Zbl0247.12008MR319941
- H.-J. Stender, Grundeinheiten für einige unendliche Klassen reiner biquadratischer Zahlkörper mit einer Anwendung auf die diophantische Gleichung oder . J. Reine Angew. Math. 264 (1973), 207–220. Zbl0272.12006MR332714
- H.-J. Stender, Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades. J. Number Theory 7 (1975), 235–250. Zbl0308.12001MR369317
- H.-J. Stender, ”Verstümmelte” Grundeinheiten für biquadratische und bikubische Zahlkörper. Math. Ann. 232.1 (1978), 55–64. Zbl0372.12009
- E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. Zbl0427.12005MR546663
- K. Wang, X. Zhang, Fundamental unit system and class number for real number field of type (2,2,2). Tsinghua Sci. Technol. 5.2 (2000), 150–153. Zbl1137.11345MR1783796
- K. Wang, Fundamental unit systems and class number of real bicyclic biquadratic number fields. Proc. Japan Acad. Ser. A Math. Sci. 77.9 (2001), 147–150. Zbl1011.11071MR1869110
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.