Groupe des unités pour des extensions diédrales complexes de degré 10 sur Q

Omar Kihel

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 2, page 469-482
  • ISSN: 1246-7405

Abstract

top
The purpose of this paper is to show that any set of four roots of the quintic polynomials exhibited by H. Darmon forms under certain conditions a fundamental system of units for the corresponding dihedral fields.

How to cite

top

Kihel, Omar. "Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$." Journal de théorie des nombres de Bordeaux 13.2 (2001): 469-482. <http://eudml.org/doc/248703>.

@article{Kihel2001,
abstract = {Le but de cet article est de montrer qu’un ensemble quelconque de quatre racines des polynômes quintiques $p(x)$ exhibés par $H$. Darmon forme sous certaines conditions un système fondamental d’unités de la fermeture normale du corps $\mathbf \{Q\} (\theta )$ où $p (\theta )= 0$.},
author = {Kihel, Omar},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {dihedral Galois group; fundamental system of units; Galois extension},
language = {fre},
number = {2},
pages = {469-482},
publisher = {Université Bordeaux I},
title = {Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$},
url = {http://eudml.org/doc/248703},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Kihel, Omar
TI - Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 469
EP - 482
AB - Le but de cet article est de montrer qu’un ensemble quelconque de quatre racines des polynômes quintiques $p(x)$ exhibés par $H$. Darmon forme sous certaines conditions un système fondamental d’unités de la fermeture normale du corps $\mathbf {Q} (\theta )$ où $p (\theta )= 0$.
LA - fre
KW - dihedral Galois group; fundamental system of units; Galois extension
UR - http://eudml.org/doc/248703
ER -

References

top
  1. [1] W.E.H. Berwick, Algebraic number fields with two independent units. Proc. London Math. Soc34 (1932), 360-378. Zbl0005.34203JFM58.0175.02
  2. [2] K.K. Billevi, Sur les unités d'un corps algébrique de degré 3 ou 4. Mat. Sbornik N. S.40 (1956) (en russe). 
  3. [3] A. Brumer, On the group of units of an absolutely cyclic number field of prime degree. J. Math. Soc. Japan21 (1969), 357-358. Zbl0188.35301MR244193
  4. [4] T.W. Cusick, Lower bounds for regulators. Lecture Notes in Math.1068, 63-73, Springer, Berlin, 1984. Zbl0549.12003MR756083
  5. [5] H. Darmon, Une famille de polynômes liée à X0(5). Notes non publiées, 1993. 
  6. [6] H. Darmon, Note on a polynomial of Emma Lehmer. Math. Comp.56 (1991), 795-800. Zbl0732.11056MR1068821
  7. [7] M. Edwards, Galois Theory. Graduate Texts in Mathematics101, Springer-Verlag, New York, 1984. Zbl0532.12001MR743418
  8. [8] M.-N. Gras, Special units in real cyclic sextic fields. Math. Comp.48 (1987), 179-182. Zbl0617.12006MR866107
  9. [9] M. Ishida, Fundamental units of certain algebraic number fields. Abh. Math. Semi.Univ. Hamburg39 (1973), 245-250. Zbl0311.12005MR335469
  10. [10] K. Iwasawa, A note on the group of units of an algebraic number field. J. Math. Pures Appl.35 (1956), 189-192. Zbl0071.26504MR76803
  11. [11] O. Lecacheux, Unités d'une famille de corps liés à la courbe X1(25). Ann. Inst. Fourier40 (1990), 237-254. Zbl0739.11023MR1070827
  12. [12] E. Lehmer, Connections between Gaussian periods and cyclic units. Math. Comp.50 (1988), 535-541. Zbl0652.12004MR929551
  13. [13] S. Maki, The determination of units in real cyclic sextic fields. Lecture Notes in Math.797, Springer, Berlin, 1980. Zbl0423.12006MR584794
  14. [14] D. Shanks, The simplest cubic fields. Math. Comp.28 (1974), 1137-1152. Zbl0307.12005MR352049
  15. [15] R. Schoof, L.C. Washington, Quintic polynomials and real cyclotomic fields with large class number. Math. Comp.50 (1988), 541-555. Zbl0649.12007MR929552
  16. [16] H.-J. Stender, Lôsbare Gleichungen axn - byn = c und Grundeinheiten fûr einige algebraische Zahikôrper vom Grade n = 3,4, 6. J. Reine Angew. Math.290 (1977), 24-62. Zbl0499.12004MR472765
  17. [17] L.C. Washington, Introduction to Cyclotomic Fields. Graduate Texts in Mathematics83, Springer-Verlag, New York, 1982. Zbl0484.12001MR718674
  18. [18] E. Weiss, First Course in algebra and number theory. Academic Press, New York-London, 1971. Zbl0241.10001MR278864
  19. [19] C.L. Zhao, The fundamental units in absolutely cyclic number fields of degree five. Sci. Sinica Ser. A27 (1984), 27-40. Zbl0531.12005MR764154

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.