Note on the complexity of Las Vegas automata problems
RAIRO - Theoretical Informatics and Applications (2006)
- Volume: 40, Issue: 3, page 501-510
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Cho and D.T. Huynh, The parallel complexity of finite-state automata problems. Inform. Comput.97 (1992) 1–22.
- M. Hirvensalo and S. Seibert, Lower bounds for Las Vegas automata by information theory. RAIRO-Inf. Theor. Appl.37 (2003) 39–49.
- J.E. Hopcroft, An nlogn algorithm for minimizing the states in a finite automaton, in The Theory of Machines and Computations, edited by Z. Kohavi. Academic Press, New York (1971) 171–179.
- J. Hromkovič and G. Schnitger, On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Inform. Comput.169 (2001) 284–296.
- J. Hromkovič and G. Schnitger, On the power of Las Vegas II. Two-way finite automata. Theoret. Comput. Sci.262 (2001) 1–24.
- H.B. Hunt, D.J. Rozenkrantz and T.G. Szymanski, On the equivalence, containment, and covering problems for the regular and context-free languages. J. Comput. Syst. Sci.12 (1976) 222–268.
- N. Immerman, Nondeterministic space is closed under complement. SIAM J. Comput.17 (1988) 935–938.
- T. Jiang and B. Ravikumar, A note on the space complexity of some decision problems for finite automata. Inform. Process. Lett.40 (1991) 25–31.
- T. Jiang and B. Ravikumar, Minimal NFA problems are hard. SIAM J. Comput.22 (1993) 1117–1141.
- N.D. Jones, Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci.11 (1975) 68–85.
- N.D. Jones, Y.E. Lien and W.T. Laaser, New problems complete for nondeterministic log space. Math. Syst. Theory10 (1976) 1–17.
- O.B. Lupanov, A comparison of two types of finite automata. Problemy Kibernetiki9 (1963) 321–326 (in Russian).
- A.R. Meyer and M.J. Fischer, Economy of description by automata, grammars and formal systems, in Proc. 12th Annual Symposium on Switching and Automata Theory (1971) 188–191.
- F.R. Moore, On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput.20 (1971) 1211–1214.
- M. Sipser, Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997).
- L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time, in Proc. 5th Annual ACM Symp. on the Theory of Computing (1973) 1–9.
- R. Szelepscényi, The method of forced enumeration for nondeterministic automata. Acta Inform.29 (1988) 279–284.
- W.G. Tzeng, A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput.21 (1992) 216–227.
- W.G. Tzeng, On path equivalence of nondeterministic finite automata. Inform. Process. Lett.58 (1996) 43–46.