Isomorphic and isometric copies of ( Γ ) in duals of Banach spaces and Banach lattices

Marek Wójtowicz

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 3, page 467-471
  • ISSN: 0010-2628

Abstract

top
Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X * contains an isometric copy of c 0 iff X * contains an isometric copy of , and (2) E * contains a lattice-isometric copy of c 0 ( Γ ) iff E * contains a lattice-isometric copy of ( Γ ) .

How to cite

top

Wójtowicz, Marek. "Isomorphic and isometric copies of $\ell _\infty (\Gamma )$ in duals of Banach spaces and Banach lattices." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 467-471. <http://eudml.org/doc/249837>.

@article{Wójtowicz2006,
abstract = {Let $X$ and $E$ be a Banach space and a real Banach lattice, respectively, and let $\Gamma $ denote an infinite set. We give concise proofs of the following results: (1) The dual space $X^*$ contains an isometric copy of $c_0$ iff $X^*$ contains an isometric copy of $\ell _\infty $, and (2) $E^*$ contains a lattice-isometric copy of $c_0(\Gamma )$ iff $E^*$ contains a lattice-isometric copy of $\ell _\infty (\Gamma )$.},
author = {Wójtowicz, Marek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {isometry; embedding of $\ell _\infty $; dual space; Banach lattice; isometry; embedding of ; dual space},
language = {eng},
number = {3},
pages = {467-471},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Isomorphic and isometric copies of $\ell _\infty (\Gamma )$ in duals of Banach spaces and Banach lattices},
url = {http://eudml.org/doc/249837},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Wójtowicz, Marek
TI - Isomorphic and isometric copies of $\ell _\infty (\Gamma )$ in duals of Banach spaces and Banach lattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 467
EP - 471
AB - Let $X$ and $E$ be a Banach space and a real Banach lattice, respectively, and let $\Gamma $ denote an infinite set. We give concise proofs of the following results: (1) The dual space $X^*$ contains an isometric copy of $c_0$ iff $X^*$ contains an isometric copy of $\ell _\infty $, and (2) $E^*$ contains a lattice-isometric copy of $c_0(\Gamma )$ iff $E^*$ contains a lattice-isometric copy of $\ell _\infty (\Gamma )$.
LA - eng
KW - isometry; embedding of $\ell _\infty $; dual space; Banach lattice; isometry; embedding of ; dual space
UR - http://eudml.org/doc/249837
ER -

References

top
  1. Abramovich Y.A., Wickstead A.W., When each continuous operator is regular. II, Indag. Math., N.S. 8 (1997), 281-294. (1997) Zbl0908.47031MR1622216
  2. Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985. Zbl1098.47001MR0809372
  3. Bessaga C., Pełczyński A., On basis and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. (1958) MR0115069
  4. Dowling P.N., Isometric copies of c 0 and in duals of Banach spaces, J. Math. Anal. Appl. 244 (2000), 223-227. (2000) Zbl0955.46011MR1746799
  5. Lindenstrauss J., Tzafriri L., Classical Banach Spaces. I, Springer, Berlin, 1977. Zbl0362.46013MR0500056
  6. Meyer-Nieberg P., Banach Lattices, Springer, Berlin, 1991. Zbl0743.46015MR1128093
  7. Rosenthal H.P., On injective Banach spaces and the spaces L ( μ ) for finite measures μ , Acta Math. 124 (1974), 205-247. (1974) MR0257721
  8. Rosenthal H.P., On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36. (1970) Zbl0227.46027MR0270122
  9. Wójtowicz M., The Sobczyk property and copies of in locally convex-solid Riesz spaces, Arch. Math. 75 (2000), 376-379. (2000) MR1785446

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.