Biembeddings of symmetric configurations and 3-homogeneous Latin trades
Mike J. Grannell; Terry S. Griggs; Martin Knor
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 3, page 411-420
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGrannell, Mike J., Griggs, Terry S., and Knor, Martin. "Biembeddings of symmetric configurations and 3-homogeneous Latin trades." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 411-420. <http://eudml.org/doc/250291>.
@article{Grannell2008,
abstract = {Using results of Altshuler and Negami, we present a classification of biembeddings of symmetric configurations of triples in the torus or Klein bottle. We also give an alternative proof of the structure of 3-homogeneous Latin trades.},
author = {Grannell, Mike J., Griggs, Terry S., Knor, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topological embedding; torus; Klein bottle; 6-regular graph; symmetric configuration of triples; partial Latin square; 3-homogeneous Latin trade; topological embedding; torus; Klein bottle; 6-regular graph; symmetric configuration},
language = {eng},
number = {3},
pages = {411-420},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Biembeddings of symmetric configurations and 3-homogeneous Latin trades},
url = {http://eudml.org/doc/250291},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Grannell, Mike J.
AU - Griggs, Terry S.
AU - Knor, Martin
TI - Biembeddings of symmetric configurations and 3-homogeneous Latin trades
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 411
EP - 420
AB - Using results of Altshuler and Negami, we present a classification of biembeddings of symmetric configurations of triples in the torus or Klein bottle. We also give an alternative proof of the structure of 3-homogeneous Latin trades.
LA - eng
KW - topological embedding; torus; Klein bottle; 6-regular graph; symmetric configuration of triples; partial Latin square; 3-homogeneous Latin trade; topological embedding; torus; Klein bottle; 6-regular graph; symmetric configuration
UR - http://eudml.org/doc/250291
ER -
References
top- Altshuler A., 10.1016/S0012-365X(73)80002-0, Discrete Math. 115 (1973), 201-217. (1973) Zbl0253.05117MR0321797DOI10.1016/S0012-365X(73)80002-0
- Cavenagh N.J., A uniqueness result for -homogeneous Latin trades, Comment. Math. Univ. Carolin. 47 (2006), 337-358. (2006) Zbl1138.05007MR2241536
- Cavenagh N.J., Donovan D.M., Drápal A., 10.1016/j.disc.2005.04.021, Discrete Math. 300 (2005), 57-70. (2005) Zbl1073.05012MR2170114DOI10.1016/j.disc.2005.04.021
- Colbourn C.J., Rosa A., Triple Systems, Clarendon Press, New York, 1999, ISBN: 0-19-853576-7. Zbl1030.05017MR1843379
- Donovan D.M., Drápal A., Lefevre J.G., Permutation representation of and -homogeneous Latin bitrades, submitted.
- Figueroa-Centeno R.M., White A.T., 10.1016/S0378-3758(99)00122-6, J. Statist. Plann. Inference 86 (2000), 421-434. (2000) Zbl0973.05014MR1768283DOI10.1016/S0378-3758(99)00122-6
- Grannell M.J., Griggs T.S., Designs and topology, in Surveys in Combinatorics 2007, London Math. Soc. Lecture Note Series 346, Cambridge University Press, Cambridge, 2007, pp.121-174. MR2252792
- Grannell M.J., Griggs T.S., Knor M., 10.1017/S0017089504001922, Glasgow Math. J. 46 (2004), 443-457. (2004) Zbl1062.05030MR2094802DOI10.1017/S0017089504001922
- Grannell M.J., Griggs T.S., Knor M., Biembeddings of symmetric configurations of triples, Proceedings of MaGiA conference, Kočovce 2004, Slovak University of Technology, 2004, pp.106-112.
- Hämäläinen C., Partitioning -homogeneous latin bitrades, preprint. MR2390076
- Kirkman T.P., On a problem of combinations, Cambridge and Dublin Math. J. 2 (1847), 191-204. (1847)
- Lawrencenko S., Negami S., 10.1006/jctb.1999.1920, J. Combin. Theory Ser. B 77 (1999), 211-218. (1999) Zbl1025.05018MR1710539DOI10.1006/jctb.1999.1920
- Lefevre J.G., Donovan D.M., Grannell M.J., Griggs T.S., A constraint on the biembedding of Latin squares, submitted. Zbl1170.05017
- Negami S., 10.1016/0012-365X(83)90057-2, Discrete Math. 44 (1983), 161-180. (1983) Zbl0508.05033MR0689809DOI10.1016/0012-365X(83)90057-2
- Negami S., Classification of -regular Klein-bottlal graphs, Research Reports on Information Sciences, Department of Information Sciences, Tokyo Institute of Technology A-96 (1984), 16pp. (1984)
- White A.T., 10.1016/S0012-365X(01)00069-3, Discrete Math. 244 (2002), 479-493. (2002) Zbl0989.05025MR1844056DOI10.1016/S0012-365X(01)00069-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.