Network character and tightness of the compact-open topology
Richard N. Ball; Anthony W. Hager
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 3, page 473-482
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBall, Richard N., and Hager, Anthony W.. "Network character and tightness of the compact-open topology." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 473-482. <http://eudml.org/doc/249890>.
@article{Ball2006,
abstract = {For Tychonoff $X$ and $\alpha $ an infinite cardinal, let $\alpha \operatorname\{def\} X := $ the minimum number of $\alpha $ cozero-sets of the Čech-Stone compactification which intersect to $X$ (generalizing $\mathbb \{R\}$-defect), and let $\operatorname\{rt\} X := \min _\alpha \max (\alpha , \alpha \operatorname\{def\} X)$. Give $C(X)$ the compact-open topology. It is shown that $\tau C(X)\le n\chi C(X) \le \operatorname\{rt\}X=\max (L(X),L(X) \operatorname\{def\} X)$, where: $\tau $ is tightness; $n\chi $ is the network character; $L(X)$ is the Lindel"of number. For example, it follows that, for $X$ Čech-complete, $\tau C(X)=L(X)$. The (apparently new) cardinal functions $n\chi C$ and $\operatorname\{rt\}$ are compared with several others.},
author = {Ball, Richard N., Hager, Anthony W.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact-open topology; network character; tightness; defect; Lindelöf number; tightness; defect; Lindelöf number},
language = {eng},
number = {3},
pages = {473-482},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Network character and tightness of the compact-open topology},
url = {http://eudml.org/doc/249890},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Ball, Richard N.
AU - Hager, Anthony W.
TI - Network character and tightness of the compact-open topology
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 473
EP - 482
AB - For Tychonoff $X$ and $\alpha $ an infinite cardinal, let $\alpha \operatorname{def} X := $ the minimum number of $\alpha $ cozero-sets of the Čech-Stone compactification which intersect to $X$ (generalizing $\mathbb {R}$-defect), and let $\operatorname{rt} X := \min _\alpha \max (\alpha , \alpha \operatorname{def} X)$. Give $C(X)$ the compact-open topology. It is shown that $\tau C(X)\le n\chi C(X) \le \operatorname{rt}X=\max (L(X),L(X) \operatorname{def} X)$, where: $\tau $ is tightness; $n\chi $ is the network character; $L(X)$ is the Lindel"of number. For example, it follows that, for $X$ Čech-complete, $\tau C(X)=L(X)$. The (apparently new) cardinal functions $n\chi C$ and $\operatorname{rt}$ are compared with several others.
LA - eng
KW - compact-open topology; network character; tightness; defect; Lindelöf number; tightness; defect; Lindelöf number
UR - http://eudml.org/doc/249890
ER -
References
top- Ball R., Hager A., Epi-topology and epi-convergence in archimedean lattice-ordered groups with unit, submitted.
- Comfort W., Balaglou G., Compact-covering numbers, Fund. Math. 131 (1988), 69-82. (1988) MR0970915
- Comfort W., Negrepontis S., Continuous pseudometrics, Lecture Notes in Pure and Appl. Math. 14, Dekker, New York, 1975. Zbl0306.54004MR0410618
- Comfort W., Retta T., Generalized perfect maps and a theorem of I. Juhász, Lecture Notes in Pure and Appl. Math. 95, Dekker, New York, 1985, pp.79-102. Zbl0564.54012MR0789263
- Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, Princeton, 1960. Zbl0327.46040MR0116199
- Hušek M., The class of -compact spaces is simple, Math. Z. 110 (1969), 123-126. (1969) MR0244947
- McCoy R., Function spaces which are -spaces, Topology Proc. 5 (1980), 139-154. (1980) MR0624467
- McCoy R., Ntantu I., Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics 1315, Springer, Berlin, 1988. Zbl0647.54001MR0953314
- Mrowka S., On -compact spaces. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 597-605. (1966) Zbl0161.19603MR0206896
- Mrowka S., -compact spaces with weight , Proc. Amer. Math. Soc. 128 (2000), 3701-3709. (2000) MR1690997
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.