Baireness of C k ( X ) for ordered X

Michael Granado; Gary Gruenhage

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 1, page 103-111
  • ISSN: 0010-2628

Abstract

top
We show that if X is a subspace of a linearly ordered space, then C k ( X ) is a Baire space if and only if C k ( X ) is Choquet iff X has the Moving Off Property.

How to cite

top

Granado, Michael, and Gruenhage, Gary. "Baireness of $C_k(X)$ for ordered $X$." Commentationes Mathematicae Universitatis Carolinae 47.1 (2006): 103-111. <http://eudml.org/doc/249891>.

@article{Granado2006,
abstract = {We show that if $X$ is a subspace of a linearly ordered space, then $C_k(X)$ is a Baire space if and only if $C_k(X)$ is Choquet iff $X$ has the Moving Off Property.},
author = {Granado, Michael, Gruenhage, Gary},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Baire; linearly ordered space; compact-open topology; Choquet; Moving Off Property; linearly ordered space; compact-open topology},
language = {eng},
number = {1},
pages = {103-111},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Baireness of $C_k(X)$ for ordered $X$},
url = {http://eudml.org/doc/249891},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Granado, Michael
AU - Gruenhage, Gary
TI - Baireness of $C_k(X)$ for ordered $X$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 1
SP - 103
EP - 111
AB - We show that if $X$ is a subspace of a linearly ordered space, then $C_k(X)$ is a Baire space if and only if $C_k(X)$ is Choquet iff $X$ has the Moving Off Property.
LA - eng
KW - Baire; linearly ordered space; compact-open topology; Choquet; Moving Off Property; linearly ordered space; compact-open topology
UR - http://eudml.org/doc/249891
ER -

References

top
  1. Bouziad A., Coincidence of the upper Kuratowski topology with the co-compact topology on compact sets, and the Prohorov property, Topology Appl. 120 (2002), 283-299. (2002) Zbl1057.54016MR1897264
  2. Engelking R., Lutzer D., Paracompactness in ordered spaces, Fund. Math. 94 (1977), 49-58. (1977) Zbl0351.54014MR0428278
  3. Gruenhage G., Games, covering properties and Eberlein compacts, Topology Appl. 23 (1986), 291-297. (1986) Zbl0604.54022MR0858337
  4. Gruenhage G., The story of a topological game, Rocky Mountain J. Math., to appear. Zbl1141.54020MR2305636
  5. Gruenhage G., Ma D.K., Baireness of C k ( X ) for locally compact X , Topology Appl. 80 (1997), 131-139. (1997) MR1469473
  6. Kechris A.S., Classical Descriptive Set Theory, Springer, New York, 1995. Zbl0819.04002MR1321597
  7. Kunen K., Set Theory, North-Holland, Amsterdam, 1980. Zbl0960.03033MR0597342
  8. Lutzer D.J., On generalized ordered spaces, Dissertationes Math. 89 (1971). (1971) Zbl0228.54026MR0324668
  9. Ma D.K., The Cantor tree, the γ -property, and Baire function spaces, Proc. Amer. Math. Soc. 119 (1993), 903-913. (1993) Zbl0785.54019MR1165061
  10. McCoy R.A., Ntantu I., Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206. (1986) Zbl0621.54011MR0836326

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.