Two divisors of ( n 2 + 1 ) / 2 summing up to n + 1

Mohamed Ayad[1]; Florian Luca[2]

  • [1] Laboratoire de Mathématiques Pures et Appliquées Université du Littoral F-62228 Calais, France
  • [2] Florian Luca Instituto de Matemáticas Universidad Nacional Autonoma de México C.P. 58089, Morelia, Michoacán, México

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 3, page 561-566
  • ISSN: 1246-7405

Abstract

top
In this short note, we give an affirmative answer to a question of Ayad from [1].

How to cite

top

Ayad, Mohamed, and Luca, Florian. "Two divisors of $(n^2+1)/2$ summing up to $n+1$." Journal de Théorie des Nombres de Bordeaux 19.3 (2007): 561-566. <http://eudml.org/doc/249957>.

@article{Ayad2007,
abstract = {In this short note, we give an affirmative answer to a question of Ayad from [1].},
affiliation = {Laboratoire de Mathématiques Pures et Appliquées Université du Littoral F-62228 Calais, France; Florian Luca Instituto de Matemáticas Universidad Nacional Autonoma de México C.P. 58089, Morelia, Michoacán, México},
author = {Ayad, Mohamed, Luca, Florian},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {561-566},
publisher = {Université Bordeaux 1},
title = {Two divisors of $(n^2+1)/2$ summing up to $n+1$},
url = {http://eudml.org/doc/249957},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Ayad, Mohamed
AU - Luca, Florian
TI - Two divisors of $(n^2+1)/2$ summing up to $n+1$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 3
SP - 561
EP - 566
AB - In this short note, we give an affirmative answer to a question of Ayad from [1].
LA - eng
UR - http://eudml.org/doc/249957
ER -

References

top
  1. M. Ayad, Critical points, critical values of a prime polynomial. Complex Var. Elliptic Equ. 51 (2006), 143–160. Zbl1091.12001MR2201670
  2. Yu. F. Bilu, B. Brindza, P. Kirschenhofer, A. Pintér and R. F. Tichy, Diophantine equations and Bernoulli polynomials. With an appendix by A. Schinzel. Compositio Math. 131 (2002), 173–188. Zbl1028.11016MR1898434
  3. Yu. F. Bilu and R. F. Tichy, The Diophantine equation f ( x ) = g ( y ) . Acta Arith. 95 (2000), 261–288. Zbl0958.11049MR1793164
  4. Y. Bugeaud and F. Luca, On Pillai’s Diophantine equation. New York J. Math. 12 (2006), 193–217. Zbl1136.11026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.