Two divisors of summing up to
Mohamed Ayad[1]; Florian Luca[2]
- [1] Laboratoire de Mathématiques Pures et Appliquées Université du Littoral F-62228 Calais, France
- [2] Florian Luca Instituto de Matemáticas Universidad Nacional Autonoma de México C.P. 58089, Morelia, Michoacán, México
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 3, page 561-566
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAyad, Mohamed, and Luca, Florian. "Two divisors of $(n^2+1)/2$ summing up to $n+1$." Journal de Théorie des Nombres de Bordeaux 19.3 (2007): 561-566. <http://eudml.org/doc/249957>.
@article{Ayad2007,
abstract = {In this short note, we give an affirmative answer to a question of Ayad from [1].},
affiliation = {Laboratoire de Mathématiques Pures et Appliquées Université du Littoral F-62228 Calais, France; Florian Luca Instituto de Matemáticas Universidad Nacional Autonoma de México C.P. 58089, Morelia, Michoacán, México},
author = {Ayad, Mohamed, Luca, Florian},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {561-566},
publisher = {Université Bordeaux 1},
title = {Two divisors of $(n^2+1)/2$ summing up to $n+1$},
url = {http://eudml.org/doc/249957},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Ayad, Mohamed
AU - Luca, Florian
TI - Two divisors of $(n^2+1)/2$ summing up to $n+1$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 3
SP - 561
EP - 566
AB - In this short note, we give an affirmative answer to a question of Ayad from [1].
LA - eng
UR - http://eudml.org/doc/249957
ER -
References
top- M. Ayad, Critical points, critical values of a prime polynomial. Complex Var. Elliptic Equ. 51 (2006), 143–160. Zbl1091.12001MR2201670
- Yu. F. Bilu, B. Brindza, P. Kirschenhofer, A. Pintér and R. F. Tichy, Diophantine equations and Bernoulli polynomials. With an appendix by A. Schinzel. Compositio Math. 131 (2002), 173–188. Zbl1028.11016MR1898434
- Yu. F. Bilu and R. F. Tichy, The Diophantine equation . Acta Arith. 95 (2000), 261–288. Zbl0958.11049MR1793164
- Y. Bugeaud and F. Luca, On Pillai’s Diophantine equation. New York J. Math. 12 (2006), 193–217. Zbl1136.11026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.