On some Diophantine equations. I.
Savin, Diana (2002)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Savin, Diana (2002)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Yann Bugeaud, Florian Luca, Maurice Mignotte, Samir Siksek (2008)
Journal de Théorie des Nombres de Bordeaux
Similarity:
The famous problem of determining all perfect powers in the Fibonacci sequence and in the Lucas sequence has recently been resolved []. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations , with and , for all primes and indeed for all but primes . Here the strategy of [] is not sufficient due to the sizes...
Robertson, John P. (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Hooshmand, M.H. (2010)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Renato Manfrin (2010)
Archivum Mathematicum
Similarity:
Under suitable hypotheses on , , we prove some stability results which relate the asymptotic behavior of the solutions of to the asymptotic behavior of the solutions of .
Ivanchov, N.I., Pabyrivska, N.V. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Borovkov, A.A. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Kuznetsov, D.S. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity: