Dynamique des polynômes quadratiques sur les corps locaux

Robert Benedetto[1]; Jean-Yves Briend[2]; Hervé Perdry[3]

  • [1] Department of Mathematics and Computer Science Amherst College, P. O. Box 5000 Amherst, MA 01002-5000, USA
  • [2] Université de Provence Laboratoire Analyse, Topologie, Probabilités, UMR CNRS 6632 39 rue Joliot-Curie 13453 Marseille cedex 13, FRANCE
  • [3] INSERM U535, Université Paris-Sud Pavillon Leriche Secteur Jaune - Porte 18 BP 1000, 94817 Villejuif Cedex, France

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 2, page 325-336
  • ISSN: 1246-7405

Abstract

top
We show that the dynamics of a quadratic polynomial over a local field can be completely decided in a finite amount of time, with the following two possibilities : either the Julia set is empty, or the polynomial is topologically conjugate on its Julia set to the one-sided shift on two symbols.

How to cite

top

Benedetto, Robert, Briend, Jean-Yves, and Perdry, Hervé. "Dynamique des polynômes quadratiques sur les corps locaux." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 325-336. <http://eudml.org/doc/249958>.

@article{Benedetto2007,
abstract = {Dans cette note, nous montrons que la dynamique d’un polynôme quadratique sur un corps local peut être déterminée en temps fini, et que l’on a l’alternative suivante : soit l’ensemble de Julia est vide, soit $P$ y est conjugué au décalage unilatéral sur $2$ symboles.},
affiliation = {Department of Mathematics and Computer Science Amherst College, P. O. Box 5000 Amherst, MA 01002-5000, USA; Université de Provence Laboratoire Analyse, Topologie, Probabilités, UMR CNRS 6632 39 rue Joliot-Curie 13453 Marseille cedex 13, FRANCE; INSERM U535, Université Paris-Sud Pavillon Leriche Secteur Jaune - Porte 18 BP 1000, 94817 Villejuif Cedex, France},
author = {Benedetto, Robert, Briend, Jean-Yves, Perdry, Hervé},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic polynomials; Julia sets; local fields},
language = {fre},
number = {2},
pages = {325-336},
publisher = {Université Bordeaux 1},
title = {Dynamique des polynômes quadratiques sur les corps locaux},
url = {http://eudml.org/doc/249958},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Benedetto, Robert
AU - Briend, Jean-Yves
AU - Perdry, Hervé
TI - Dynamique des polynômes quadratiques sur les corps locaux
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 325
EP - 336
AB - Dans cette note, nous montrons que la dynamique d’un polynôme quadratique sur un corps local peut être déterminée en temps fini, et que l’on a l’alternative suivante : soit l’ensemble de Julia est vide, soit $P$ y est conjugué au décalage unilatéral sur $2$ symboles.
LA - fre
KW - quadratic polynomials; Julia sets; local fields
UR - http://eudml.org/doc/249958
ER -

References

top
  1. E. Artin, Algebraic Numbers and Algebraic Functions. Gordon and Breach, New-York 1967. Zbl0194.35301MR237460
  2. M. Baker et L-C. Hsia, Canonical heights, transfinite diameters, and polynomial dynamics. J. Reine Angew. Math. 585 (2005), 61–92. Zbl1071.11040MR2164622
  3. R. Benedetto, Fatou Components in p -adic Dynamics. Thesis, Brown University, 1998. 
  4. R. Benedetto, Reduction, dynamics, and Julia sets of rational functions. J. Number Theory 86 (2001), 175–195. Zbl0978.37039MR1813109
  5. J-P. Bézivin, Sur les points périodiques des applications rationnelles en dynamique ultramétrique. Acta Arithmetica 100 (2001), 63–74. Zbl1025.11035MR1864626
  6. J-P. Bézivin, Sur la compacité des ensembles de Julia des polynômes p -adiques. Math. Z. 246 (2004), 273–289. Zbl1047.37031MR2031456
  7. L. Blum, F. Cucker, M. Shub et S. Smale, Complexity And Real Computation. Spinger Verlag, Berlin 1998. Zbl0948.68068MR1479636
  8. M. Braverman et M. Yampolsky, Non-computable Julia sets. J. Amer. Math. Soc. 19 (2006), no. 3, 551–578. Zbl1099.37042MR2220099
  9. M. Braverman et M. Yampolsky, On computability of Julia sets : answers to questions of Milnor and Shub. Preprint 2006. MR2220099
  10. J. Denef, p -adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math. 369 (1986), 154–166. Zbl0584.12015MR850632
  11. A. Douady et J. H. Hubbard, Itération des polynômes quadratiques complexes. Comptes Rendus Acad. Sci. Paris 294 (1982), 123–126. Zbl0483.30014MR651802
  12. V. A. Dremov, On a p -adic Julia set. Russian Math. Surveys 58 (2003), 1194–1195. Zbl1054.37027MR2054097
  13. C. Favre et J. Rivera–Letelier, Théorème d’équidistribution de Brolin en dynamique p -adique. Comptes Rendus Acad. Sci. Paris 339 (2004), 271–276. Zbl1052.37039
  14. L-C. Hsia, A weak Néron model with applications to p -adic dynamical systems. Compositio Math. 100 (1996), 277–304. Zbl0851.14001MR1387667
  15. L-C. Hsia, Closure of periodic points over a non archimedean field. J. London. Math. Soc. 62 (2000), 685-700. Zbl1022.11060MR1794277
  16. M. Jakobson, Absolutely continuous invariant measures for one parameter families of one-dimensional maps. Comm. Math. Phys. 81 (1981), 161–185. Zbl0497.58017MR630331
  17. R. Jones, Galois martingales and the hyperbolic subset of the p -adic Mandelbrot set. PhD thesis (2005), Brown University. 
  18. M. Lyubich, Almost every real quadratic map is either regular or stochastic. Ann. of Math. 156 (2002), 1–78. Zbl1160.37356MR1935840
  19. J. Milnor, Dynamics in One Complex Variable. Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1999. Zbl0946.30013MR1721240
  20. P. Morton et J. Silverman, Periodic points, multiplicities, and dynamical units. J. Reine Angew. Math. 461 (1995), 81–122. Zbl0813.11059MR1324210
  21. W. Narkiewicz, Polynomial Mappings. Lecture Notes in Mathematics 1600 (1995), Springer Verlag, Berlin. Zbl0829.11002MR1367962
  22. M. Nevins et T. Rogers, Quadratic maps as dynamical systems on the p -adic numbers. Prépublication (2000). 
  23. D. G. Northcott, Periodic points on an algebraic variety. Ann. of Math. 51 (1950), 167–177. Zbl0036.30102MR34607
  24. T. Pezda, Polynomial cycles in certain local domains. Acta Arithmetica 66 (1994), 11–22. Zbl0803.11063MR1262650
  25. J. Rivera–Letelier, Dynamique des fractions rationnelles sur les corps locaux, dans Geometric Methods in Dynamics, II. Astérisque 287 (2003), 199-231. Zbl1041.37021
  26. E. Thiran, D. Verstegen, J. Weyers, p -adic dynamics. J. Stat. Phys. 54 (1989), 893–913. Zbl0672.58019MR988564
  27. A. Weil, Basic Number Theory. Die Grundlehren des mathematischen Wissenschaften 144 (1967), Springer Verlag, Berlin. Zbl0176.33601MR234930
  28. C. Woodcock et N. Smart, p -adic chaos and random number generation. Experiment. Math. 7 (1998), 333–342. Zbl0920.11052MR1678087

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.