A weak Néron model with applications to p -adic dynamical systems

Liang-Chung Hsia

Compositio Mathematica (1996)

  • Volume: 100, Issue: 3, page 277-304
  • ISSN: 0010-437X

How to cite

top

Hsia, Liang-Chung. "A weak Néron model with applications to $p$-adic dynamical systems." Compositio Mathematica 100.3 (1996): 277-304. <http://eudml.org/doc/90430>.

@article{Hsia1996,
author = {Hsia, Liang-Chung},
journal = {Compositio Mathematica},
keywords = {-adic dynamical systems; finite morphism; weak Néron model; Julia set},
language = {eng},
number = {3},
pages = {277-304},
publisher = {Kluwer Academic Publishers},
title = {A weak Néron model with applications to $p$-adic dynamical systems},
url = {http://eudml.org/doc/90430},
volume = {100},
year = {1996},
}

TY - JOUR
AU - Hsia, Liang-Chung
TI - A weak Néron model with applications to $p$-adic dynamical systems
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 100
IS - 3
SP - 277
EP - 304
LA - eng
KW - -adic dynamical systems; finite morphism; weak Néron model; Julia set
UR - http://eudml.org/doc/90430
ER -

References

top
  1. 1 Beardon, A.F.: Iteration of rational functions: complex analytic dynamical systems, New York: Springer-Verlag1991. Zbl1120.30300MR1128089
  2. 2 Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models, Berlin: Springer-Verlag1990. Zbl0705.14001MR1045822
  3. 3 Bosch, S., Lütkebohmert, W.: Stable reduction and uniformization of abelian varieties I. Math. Ann.270 (1985) 349-379. Zbl0554.14012MR774362
  4. 4 Bosch, S., Lütkebohmert, W.: Néron models from the rigid analytic viewpoint. J. reine Angew Math.364 (1986) 69-84. Zbl0568.14024MR817639
  5. 5 Bosch, S., Lütkebohmert, W.: Formal and rigid geometry. Math. Ann.295 (1993) 291-317. Zbl0808.14017MR1202394
  6. 6 Call, G., Silverman, J.H.: Canonical heights on varieties with morphisms. Compositio Math. volume89 (1993) 163-205. Zbl0826.14015MR1255693
  7. 7 Davaney, R.L.: An introduction to chaotic dynamical systems. New York: Addison Wesley. Zbl0695.58002
  8. 8 Ega I:La langage des schémas. Publ. Math. IHES4 (1960). 
  9. 9 EgaIV: Etude local des schémas et des morphismes de schémas. Publ. Math. IHES32 (1967). 
  10. 10 Hartshorne, R.: Algebraic Geometry. New York: Springer-Verlag, 1977. Zbl0367.14001MR463157
  11. 11 Lichtenbaum, S.: Curves over discrete valuation ring. Am. J. Math.90 (1968) 380-405. Zbl0194.22101MR230724
  12. 12 Morton, P., Silverman, J.H.: Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math.461 (1995), 81-122. Zbl0813.11059MR1324210
  13. 13 Mumford, D.: An analytic construction of degenerate curves over complete local fields. Compositio Math.24 (1971) 129-174. Zbl0228.14011MR352105
  14. 14 Mumford D.: Abelian varieties. Oxford University Press1974. Zbl0326.14012
  15. 15 Rumley, R.S.: Capacity theory on algebraic curves, volume 1378 of Lecture Notes in Math. Berlin: Springer-Verlag, 1989. Zbl0679.14012MR1009368
  16. 16 Serre, J.P.: Trees, Springer-Verlag, Berlin- Heidelberg-New York1980. Zbl0548.20018MR607504
  17. 17 SGA I: Revêtements etales et groupe fondamental. Lect. Notes Math.224, Springer, Berlin, Heideberg, New York (1971). Zbl0234.14002MR354651
  18. 18 Tate, J.: Rigid analytic spaces. Invent. Math.12 (1971) 257-289. Zbl0212.25601MR306196

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.