Small points on a multiplicative group and class number problem
- [1] Université de Caen Laboratoire de Mathématiques Nicolas Oresme, U.M.R. 6139 (C.N.R.S.) Campus II, BP 5186 F–14032 Caen Cedex
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 27-39
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAmoroso, Francesco. "Small points on a multiplicative group and class number problem." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 27-39. <http://eudml.org/doc/249982>.
@article{Amoroso2007,
abstract = {Let $V$ be an algebraic subvariety of a torus $\{\mathbb\{G\}\}_m^n\hookrightarrow \{\mathbb\{P\}\}^n$ and denote by $V^*$ the complement in $V$ of the Zariski closure of the set of torsion points of $V$. By a theorem of Zhang, $V^*$ is discrete for the metric induced by the normalized height $\hat\{h\}$. We describe some quantitative versions of this result, close to the conjectural bounds, and we discuss some applications to study of the class group of some number fields.},
affiliation = {Université de Caen Laboratoire de Mathématiques Nicolas Oresme, U.M.R. 6139 (C.N.R.S.) Campus II, BP 5186 F–14032 Caen Cedex},
author = {Amoroso, Francesco},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Lehmer's problem; heights; class numbers; exponent of class group},
language = {eng},
number = {1},
pages = {27-39},
publisher = {Université Bordeaux 1},
title = {Small points on a multiplicative group and class number problem},
url = {http://eudml.org/doc/249982},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Amoroso, Francesco
TI - Small points on a multiplicative group and class number problem
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 27
EP - 39
AB - Let $V$ be an algebraic subvariety of a torus ${\mathbb{G}}_m^n\hookrightarrow {\mathbb{P}}^n$ and denote by $V^*$ the complement in $V$ of the Zariski closure of the set of torsion points of $V$. By a theorem of Zhang, $V^*$ is discrete for the metric induced by the normalized height $\hat{h}$. We describe some quantitative versions of this result, close to the conjectural bounds, and we discuss some applications to study of the class group of some number fields.
LA - eng
KW - Lehmer's problem; heights; class numbers; exponent of class group
UR - http://eudml.org/doc/249982
ER -
References
top- F. Amoroso, Une minoration pour l’exposant du groupe des classes d’un corps engendré par un nombre de Salem. International Journal of Number Theory 3, no. 2 (2007), 1–13.
- F. Amoroso, S. David, Le problème de Lehmer en dimension supérieure. J. Reine Angew. Math. 513 (1999), 145–179. Zbl1011.11045MR1713323
- F. Amoroso, S. David, Densité des points à cordonnées multiplicativement indépendantes. Ramanujan J. 5 (2001), 237–246. Zbl0996.11046MR1876697
- F. Amoroso, S. David, Minoration de la hauteur normalisée dans un tore. Journal de l’Institut de Mathématiques de Jussieu 2, no. 3 (2003), 335–381. Zbl1041.11048
- F. Amoroso, S. David, Distribution des points de petite hauteur dans les groupes multiplicatifs. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3, no. 2 (2004), 325–348. MR2075986
- F. Amoroso, S. David, Points de petite hauteur sur une sous-variété d’un tore (2005). Compos. Math. (to appear). Zbl1116.11045
- F. Amoroso, R. Dvornicich, Lower bounds for the height and size of the ideal class group in CM fields. Monatsh. Math. 138, no.2 (2003), 85–94. Zbl1040.11077MR1963737
- F. Amoroso, R. Dvornicich, A Lower Bound for the Height in Abelian Extensions. J. Number Theory 80, no. 2 (2000), 260–272. Zbl0973.11092MR1740514
- F. Amoroso, F. Nuccio, Algebraic Numbers of Small Weil’s height in CM-fields: on a Theorem of Schinzel (2005). J. Number Theory (to appear). Zbl1111.11032
- F. Amoroso, U. Zannier, A relative Dobrowolski’s lower bound over abelian extensions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29, no 3 (2000), 711–727. Zbl1016.11026
- E. Bombieri, U. Zannier, Algebraic points on subvarieties of . Internat. Math. Res. Notices, 7 (1995), 333–347. Zbl0848.11030MR1350686
- P. Borwein, E. Dobrowolski, M. Mossinghoff, Lehmer’s problem for polynomials with odd coefficients. Bull. London Math. Soc., 36 (2004), 332–338. Zbl1172.11034
- T. Chinburg, On the arithmetic of two constructions of Salem numbers. J. Reine Angew. Math. 348 (1984), 166-179. Zbl0517.12001MR733929
- S. David, P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28, no. 3 (1999), 489-543; Errata, ibidem 29, no 3 (2000), 729-731. Zbl1002.11055MR1736526
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith. 34 (1979), 391–401. Zbl0416.12001MR543210
- J. C. Lagarias, A. M. Odlyzko, Effective versions of the ebotarev density theorem. Algebraic Number Fields, Durham Symposium, Academic Press, 1977. Zbl0362.12011MR447191
- M. Laurent, Equations diophantiennes exponentielles. Invent. Math. 78 (1984), 299–327. Zbl0554.10009MR767195
- D. H. Lehmer, Factorization of certain cyclotomic functions. Ann. of Math. 34 (1933), 461–479. Zbl0007.19904MR1503118
- S. Louboutin, R. Okazaki, Exponents of the ideal class groups of CM number fields. Math. Z. 243, no.1 (2003), 155–159. Zbl1049.11122MR1953054
- M. Mignotte, Estimations élémentaires effectives sur les nombres algébriques. Publications I. R. M. A., Strasbourg, 1979. Zbl0502.10016
- A. M. Odlyzko, Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (1975), 275–286. Zbl0306.12005MR376613
- P. Philippon, Critères pour l’indépendance algébrique. Inst. Hautes Etudes Sci. Publ. Math. 64 (1986), 5–52. Zbl0615.10044
- C. Pontreau, Minoration effective de la hauteur des points d’une courbe de . Acta Arith. 120, no. 1 (2005), 1–26. Zbl1155.11331
- C. Pontreau, Points de petite hauteur d’une surface. Canadian Journal of Mathematics. À paraître. Zbl1239.11072
- A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number. Acta Arith. 24 (1973), 385–399. Addendum; ibid. 26 (1973), 329–361. Zbl0275.12004MR360515
- W. M. Schmidt, Heights of points on subvarieties of . In Number Theory 93–94. S. David editor, London Math. Soc. Ser., volume 235, Cambridge University Press, 1996. Zbl0917.11023MR1628798
- J. H. Silverman, Lower bounds for height functions. Duke Math. J. 51 (1984), 395–403. Zbl0579.14035MR747871
- D. Simon, The index of nonmonic polynomials. Indag. Math. New Ser. 12, no.4 (2001), 505–517. Zbl1020.11065MR1908878
- C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic number. Bull. London Math. Soc. 3 (1971), 169–175. Zbl0235.12003MR289451
- S. Zhang, Positive line bundles on arithmetic varieties. J. Amer. Math. Soc. 8, no. 1 (1995), 187–221. Zbl0861.14018MR1254133
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.