Distribution des points de petite hauteur dans les groupes multiplicatifs

Francesco Amoroso[1]; Sinnou David[2]

  • [1] U. M. R. 6139 (C. N. R. S.) Laboratoire de Mathématiques Nicolas Oresme Département de Mathématiques Université de Caen Campus II, BP 5186 14032 Caen Cédex, France
  • [2] U. M. R. 7586 (C. N. R. S.) – U. F. R. 921 Problèmes Diophantiens Département de Mathématiques Université Pierre et Marie Curie 4, Place Jussieu 75005 Paris, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 2, page 325-348
  • ISSN: 0391-173X

Abstract

top
We prove a new lower bound for the height of points on a subvariety  V of a multiplicative torus, which lie outside the union of torsion subvarieties of  V . Although lower bounds for the heights of these points where already known (decreasing multi-exponential function of the degree for Scmhidt and Bombieri–Zannier, [Sch], [Bo-Za], and inverse monomial in the degree by the second author of this note and P. Philippon, [Da-Phi]), our method provesup to an ε the sharpest conjectures that can be formulated.

How to cite

top

Amoroso, Francesco, and David, Sinnou. "Distribution des points de petite hauteur dans les groupes multiplicatifs." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.2 (2004): 325-348. <http://eudml.org/doc/84532>.

@article{Amoroso2004,
abstract = {We prove a new lower bound for the height of points on a subvariety $V$ of a multiplicative torus, which lie outside the union of torsion subvarieties of $V$. Although lower bounds for the heights of these points where already known (decreasing multi-exponential function of the degree for Scmhidt and Bombieri–Zannier, [Sch], [Bo-Za], and inverse monomial in the degree by the second author of this note and P. Philippon, [Da-Phi]), our method provesup to an $\varepsilon $ the sharpest conjectures that can be formulated.},
affiliation = {U. M. R. 6139 (C. N. R. S.) Laboratoire de Mathématiques Nicolas Oresme Département de Mathématiques Université de Caen Campus II, BP 5186 14032 Caen Cédex, France; U. M. R. 7586 (C. N. R. S.) – U. F. R. 921 Problèmes Diophantiens Département de Mathématiques Université Pierre et Marie Curie 4, Place Jussieu 75005 Paris, France},
author = {Amoroso, Francesco, David, Sinnou},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {2},
pages = {325-348},
publisher = {Scuola Normale Superiore, Pisa},
title = {Distribution des points de petite hauteur dans les groupes multiplicatifs},
url = {http://eudml.org/doc/84532},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Amoroso, Francesco
AU - David, Sinnou
TI - Distribution des points de petite hauteur dans les groupes multiplicatifs
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 2
SP - 325
EP - 348
AB - We prove a new lower bound for the height of points on a subvariety $V$ of a multiplicative torus, which lie outside the union of torsion subvarieties of $V$. Although lower bounds for the heights of these points where already known (decreasing multi-exponential function of the degree for Scmhidt and Bombieri–Zannier, [Sch], [Bo-Za], and inverse monomial in the degree by the second author of this note and P. Philippon, [Da-Phi]), our method provesup to an $\varepsilon $ the sharpest conjectures that can be formulated.
LA - fre
UR - http://eudml.org/doc/84532
ER -

References

top
  1. [Am-Da] F. Amoroso – S. David, Le problème de Lehmer en dimension supérieure, J. reine angew. Math. 513 (1999), 145-179. Zbl1011.11045MR1713323
  2. [Am-Da2] F. Amoroso – S. David, Minoration de la hauteur normalisée des hypersurfaces, Acta Arith. 92 (2000), 340-366. Zbl0948.11025MR1760242
  3. [Am-Da3] F. Amoroso – S. David, Densité des points à coordonnées multiplicativement indépendantes, Ramanujan Math. Journal. 5 (2001), 237-246. Zbl0996.11046MR1876697
  4. [Am-Da4] F. Amoroso – S. David, Minoration de la hauteur normalisée dans un tore, Journal de l’Institut de Mathématiques de Jussieu 2 (2003), 335-381. Zbl1041.11048MR1990219
  5. [Am-Dv] F. Amoroso – R. Dvornicich, A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), 260-272. Zbl0973.11092MR1740514
  6. [Am-Za] F. Amoroso – U. Zannier, Minoration de la hauteur normalisée dans un tore, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 711-727. Zbl1016.11026MR1817715
  7. [Bo-Va] E. Bombieri – J. Vaaler, Siegel’s lemma, Invent. Math. 73 (1983), 11-32. Zbl0533.10030MR707346
  8. [Bo-Za] E. Bombieri – U. Zannier, Algebraic points on subvarieties of 𝔾 m n , Int. Math. Res. Not. 7 (1995), 333-347. Zbl0848.11030MR1350686
  9. [Ch] M. Chardin, Une majoration de la fonction de Hilbert et ses conséquences pour l’interpolation algébrique, Bulletin de la Société Mathématique de France 117 (1988), 305-318. Voir aussi Contributions à l’algèbre commutative effective et à la théorie de l’élimination, Thèse de doctorat, Université de Paris VI, 1990. Zbl0709.13007MR1020108
  10. [Da–Hi] S. David – M. Hindry, Minoration de la hauteur de Néron–Tate sur les variétés abéliennes de type C.M., J. reine angew. Math. 529 (2000), 1-74. Zbl0993.11034MR1799933
  11. [Da–Ph] S. David – P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 489-543 ; Errata ibidem 29 (2000). Zbl1002.11055MR1736526
  12. [Do] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. Zbl0416.12001MR543210
  13. [Le] H. Lehmer, Factorisation of some cyclotomic functions, Ann. of Math. 34 (1933), 461-479. Zbl0007.19904
  14. [Ph] P. Philippon, Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114 (1986), 355-383 ; Nouveaux lemmes de zéros dans les groupes algébriques commutatifs, Rocky Mountain J. Math. (3) 26 (1996), 1069-1088. Zbl0617.14001MR1428487
  15. [Sch] W. Schmidt, Heights of points on subvarieties of 𝔾 m n , in “Number theory, Séminaire de Théorie des Nombres de Paris” 1993-1994 (S. David editeur) London Math. Soc. Ser. 235 (1996), 157-187, Cambridge University Press. Zbl0917.11023MR1628798

Citations in EuDML Documents

top
  1. Enrico Bombieri, David Masser, Umberto Zannier, Intersecting a plane with algebraic subgroups of multiplicative groups
  2. Francesco Amoroso, Small points on a multiplicative group and class number problem
  3. Emmanuel Delsinne, Le problème de Lehmer relatif en dimension supérieure
  4. Gaël Rémond, Autour de la conjecture de Zilber-Pink
  5. Nicolas Ratazzi, Intersection de courbes et de sous-groupes et problèmes de minoration de hauteur dans les variétés abéliennes C.M.

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.