Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity (errata)
ESAIM: Control, Optimisation and Calculus of Variations (2007)
- Volume: 13, Issue: 2, page 413-417
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMennucci, Andrea C. G.. "Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity (errata)." ESAIM: Control, Optimisation and Calculus of Variations 13.2 (2007): 413-417. <http://eudml.org/doc/249993>.
@article{Mennucci2007,
abstract = {
This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV10 (2004) 426–451].
},
author = {Mennucci, Andrea C. G.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Hamilton-Jacobi equations; cutlocus; conjugate points},
language = {eng},
month = {5},
number = {2},
pages = {413-417},
publisher = {EDP Sciences},
title = {Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity (errata)},
url = {http://eudml.org/doc/249993},
volume = {13},
year = {2007},
}
TY - JOUR
AU - Mennucci, Andrea C. G.
TI - Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity (errata)
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/5//
PB - EDP Sciences
VL - 13
IS - 2
SP - 413
EP - 417
AB -
This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV10 (2004) 426–451].
LA - eng
KW - Hamilton-Jacobi equations; cutlocus; conjugate points
UR - http://eudml.org/doc/249993
ER -
References
top- P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Rat. Mech.140 (1997) 197–223 (or preprint 13-95, Dip. Mat., Univ. Tor Vergata, Roma).
- H. Federer, Geometric measure theory. Springer-Verlag (1969).
- G.J. Galloway, P.T. Chruściel, J.H.G. Fu and R. Howard, On fine differentiability properties of horizons and applications to Riemannian geometry. J. Geom. Phys.41 (2002) 1–12.
- J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. AMS353 (2000) 21–40.
- Y.Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math.58 (2005) 85–146 (first received as a personal communication in June 2003).
- C. Mantegazza and A.C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim.47 (2002) 1–25.
- A.C.G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: regularity. ESAIM: COCV10 (2004) 426–451.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.