Cut and singular loci up to codimension 3
Pablo Angulo Ardoy[1]; Luis Guijarro[2]
- [1] Universidad Autónoma de Madrid Departamento de Matemáticas Facultad de Ciencias Campus de Cantoblanco 28049 Madrid (Spain)
- [2] Department of Mathematics Universidad Autónoma de Madrid. Please complete ICMAT CSIC-UAM-UCM-UC3M
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1655-1681
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArdoy, Pablo Angulo, and Guijarro, Luis. "Cut and singular loci up to codimension 3." Annales de l’institut Fourier 61.4 (2011): 1655-1681. <http://eudml.org/doc/219811>.
@article{Ardoy2011,
abstract = {We give a new and detailed description of the structure of cut loci, with direct applications to the singular sets of some Hamilton-Jacobi equations. These sets may be non-triangulable, but a local description at all points except for a set of Hausdorff dimension $n-2$ is well known. We go further in this direction by giving a classification of all points up to a set of Hausdorff dimension $n-3$.},
affiliation = {Universidad Autónoma de Madrid Departamento de Matemáticas Facultad de Ciencias Campus de Cantoblanco 28049 Madrid (Spain); Department of Mathematics Universidad Autónoma de Madrid. Please complete ICMAT CSIC-UAM-UCM-UC3M},
author = {Ardoy, Pablo Angulo, Guijarro, Luis},
journal = {Annales de l’institut Fourier},
keywords = {Cut locus; Hamilton-Jacobi equations; focal points; cut locus},
language = {eng},
number = {4},
pages = {1655-1681},
publisher = {Association des Annales de l’institut Fourier},
title = {Cut and singular loci up to codimension 3},
url = {http://eudml.org/doc/219811},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Ardoy, Pablo Angulo
AU - Guijarro, Luis
TI - Cut and singular loci up to codimension 3
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1655
EP - 1681
AB - We give a new and detailed description of the structure of cut loci, with direct applications to the singular sets of some Hamilton-Jacobi equations. These sets may be non-triangulable, but a local description at all points except for a set of Hausdorff dimension $n-2$ is well known. We go further in this direction by giving a classification of all points up to a set of Hausdorff dimension $n-3$.
LA - eng
KW - Cut locus; Hamilton-Jacobi equations; focal points; cut locus
UR - http://eudml.org/doc/219811
ER -
References
top- G. Alberti, L. Ambrosio, P. Cannarsa, On the singularities of convex functions, Comm. Pure Appl. Math. 76 (1992), 421-435 Zbl0784.49011MR1185029
- P. A. Ardoy, L. Guijarro, Balanced split sets and Hamilton Jacobi equations Zbl1221.35105
- D. Barden, H. Le, Some consequences of the nature of the distance function on the cut locus in a riemannian manifold, J. London Math. Soc. (2) 56 (1997), 369-383 Zbl0892.53021MR1489143
- M. A. Buchner, The structure of the cut locus in dimension less than or equal to six, Compositio Math. 37 (1978), 103-119 Zbl0407.58008MR501100
- P. Cannarsa, C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, 58 (2004), Birkhäuser Boston, Boston Zbl1095.49003MR2041617
- H. Federer, Geometric measure theory, 153 (1969), Springer-Verlag New York Inc., New York Zbl0874.49001MR257325
- H. Gluck, D. Singer, Scattering of Geodesic Fields, I, Annals of Mathematics 108 (1978), 347-372 Zbl0399.58011MR506991
- J. Hebda, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc. 299 (1987), 559-572 Zbl0615.53026MR869221
- J. Itoh, M. Tanaka, The dimension of a cut locus on a smooth Riemannian manifold, Tohoku Math. J. (2) 50 (1998), 571-575 Zbl0939.53029MR1653438
- J. Itoh, M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Transactions of the A.M.S. 353 (2000), 21-40 Zbl0971.53031MR1695025
- YY. Li, L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math. 58 (2005), 85-146 Zbl1062.49021MR2094267
- P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, 69 (1982), Pitman, Boston, MA Zbl0497.35001MR667669
- C. Mantegazza, A. C. Mennucci, Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifolds, Appl. Math. Optim. 47 (2003), 1-25 Zbl1048.49021MR1941909
- A.C. Mennucci, Regularity And Variationality Of Solutions To Hamilton-Jacobi Equations. Part I: Regularity (2nd Edition), ESAIM Control Optim. Calc. Var. 13 (2007), 413-417 Zbl1121.49028MR2306644
- J. Milnor, Morse theory, 51 (1963), Princeton University Press, Princeton, N.J. Zbl0108.10401MR163331
- F. W. Warner, The conjugate locus of a Riemannian manifold, Amer. J. of Math. 87 (1965), 573-604 Zbl0129.36002MR208534
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.