Stabilization of Schrödinger equation in exterior domains

Lassaad Aloui; Moez Khenissi

ESAIM: Control, Optimisation and Calculus of Variations (2007)

  • Volume: 13, Issue: 3, page 570-579
  • ISSN: 1292-8119

Abstract

top
We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.

How to cite

top

Aloui, Lassaad, and Khenissi, Moez. "Stabilization of Schrödinger equation in exterior domains." ESAIM: Control, Optimisation and Calculus of Variations 13.3 (2007): 570-579. <http://eudml.org/doc/250004>.

@article{Aloui2007,
abstract = { We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties. },
author = {Aloui, Lassaad, Khenissi, Moez},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Cut-off resolvent; local energy decay; stabilization; cut-off resolvent},
language = {eng},
month = {6},
number = {3},
pages = {570-579},
publisher = {EDP Sciences},
title = {Stabilization of Schrödinger equation in exterior domains},
url = {http://eudml.org/doc/250004},
volume = {13},
year = {2007},
}

TY - JOUR
AU - Aloui, Lassaad
AU - Khenissi, Moez
TI - Stabilization of Schrödinger equation in exterior domains
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/6//
PB - EDP Sciences
VL - 13
IS - 3
SP - 570
EP - 579
AB - We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.
LA - eng
KW - Cut-off resolvent; local energy decay; stabilization; cut-off resolvent
UR - http://eudml.org/doc/250004
ER -

References

top
  1. L. Aloui and M. Khenissi, Stabilisation de l'équation des ondes dans un domaine extérieur. Rev. Math. Iberoamericana28 (2002) 1–16.  
  2. N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Act. Math.1 (1998) 1–29.  
  3. N. Burq, Semi-classical estimates for the resolvent in non trapping geometries. Int. Math. Res. Not.5 (2002) 221–241.  
  4. A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time decay of the wave functions. Duke Math. J.46 (1979) 583–612.  
  5. M. Khenissi, Équation des ondes amorties dans un domaine extérieur. Bull. Soc. Math. France131 (2003) 211–228.  
  6. R.B. Melrose and J. Sjostrand, Singularities of boundary value problems I. Comm. Pure Appl. Math.31 (1978) 593–617.  
  7. C.S. Morawetz, Decay for solution of the exterior problem for the wave equation. Comm. Pure Appl. Math.28 (1975) 229–264.  
  8. J. Ralston, Solution of the wave equation with localized energy. Comm. Pure Appl. Math.22 (1969) 807–823.  
  9. J. Rauch, Local decay of scattering solutions of Schrödinger-type equation. Comm. Math. Phys.61 (1978) 149–168.  
  10. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. I: Functional Analysis. New York, Academic Press (1972).  
  11. Y. Tsutsumi, Local energy decay of solutions to the free Schrödinger equation in exterior domains. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.31 (1984) 97–108.  
  12. B. Vainberg, On the analytical properties of the resolvent for certain class of operator-pencils. Math. USSR-Sb.6 (1968) 241–273.  
  13. B. Vainberg, On the exterior elliptic problems polynomially depending on a spectral parameters, and asymptotic behaviour for large time of solutions of non stationary problems. Math. USSR-Sb.21 (1973) 221–239.  
  14. B. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and asymptotic behaviour as t + of solutions of non-stationary problems. Russian Math. Surveys30 (1975) 1–58.  
  15. B. Vainberg, Asymptotic methods in equations of mathematical physics. Gordon and Breach, New York (1988).  
  16. G. Vodev, On the uniform decay of the local energy. Serdica Math. J.25 (1999) 191–206.  
  17. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains. Lect. Notes Math.442, Springer-Verlag (1975).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.