Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states
David Avanessoff; Jean-Baptiste Pomet
ESAIM: Control, Optimisation and Calculus of Variations (2007)
- Volume: 13, Issue: 2, page 237-264
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAvanessoff, David, and Pomet, Jean-Baptiste. "Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states." ESAIM: Control, Optimisation and Calculus of Variations 13.2 (2007): 237-264. <http://eudml.org/doc/250034>.
@article{Avanessoff2007,
abstract = {
This paper studies Monge parameterization, or differential flatness, of control-affine systems with four states and two controls. Some of them are known to be flat, and this implies
admitting a Monge parameterization. Focusing on systems outside this class, we describe the only possible structure of such a parameterization for these systems, and give a
lower bound on the order of this parameterization, if it exists. This lower-bound is good enough to recover the known results about “(x,u)-flatness” of these systems, with much more elementary
techniques.
},
author = {Avanessoff, David, Pomet, Jean-Baptiste},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Dynamic feedback linearization; flat control systems; Monge
problem; Monge equations; Monge problem},
language = {eng},
month = {5},
number = {2},
pages = {237-264},
publisher = {EDP Sciences},
title = {Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states},
url = {http://eudml.org/doc/250034},
volume = {13},
year = {2007},
}
TY - JOUR
AU - Avanessoff, David
AU - Pomet, Jean-Baptiste
TI - Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/5//
PB - EDP Sciences
VL - 13
IS - 2
SP - 237
EP - 264
AB -
This paper studies Monge parameterization, or differential flatness, of control-affine systems with four states and two controls. Some of them are known to be flat, and this implies
admitting a Monge parameterization. Focusing on systems outside this class, we describe the only possible structure of such a parameterization for these systems, and give a
lower bound on the order of this parameterization, if it exists. This lower-bound is good enough to recover the known results about “(x,u)-flatness” of these systems, with much more elementary
techniques.
LA - eng
KW - Dynamic feedback linearization; flat control systems; Monge
problem; Monge equations; Monge problem
UR - http://eudml.org/doc/250034
ER -
References
top- E. Aranda-Bricaire, C.H. Moog and J.-B. Pomet, An infinitesimal Brunovsky form for nonlinear systems with applications to dynamic linearization. Banach Center Publications32 (1995) 19–33.
- D. Avanessoff, Linéarisation dynamique des systèmes non linéaires et paramétrage de l'ensemble des solutions. Ph.D. thesis, University of Nice-Sophia Antipolis (June 2005).
- R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmitt and P.A. Griffiths, Exterior Differential Systems, Springer-Verlag, M.S.R.I. Publications 18 (1991).
- É. Cartan, Sur l'intégration de certains systèmes indéterminés d'équations différentielles. J. reine angew. Math.145 (1915) 86–91.
- B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization. Syst. Control Lett.13 (1989) 143–151.
- B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optim.29 (1991) 38–57.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci. ParisSér. I315 (1992) 619–624.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and examples. Int. J. Control61 (1995) 1327–1361.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control44 (1999) 922–937.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Some open questions related to flat nonlinear systems, in Open problems in mathematical systems and control theory, Springer, London (1999) 99–103.
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities. Springer-Verlag, New York, GTM 14 (1973).
- D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen. Math. Annalen73 (1912) 95–108.
- E. Hubert, Notes on triangular sets and triangulation-decomposition algorithms. I: Polynomial systems. II: Differential systems. In F. Winkler et al. eds., Symbolic and Numerical Scientific Computing2630, 1–87. Lect. Notes Comput. Sci. (2003).
- A. Isidori, C.H. Moog and A. de Luca, A sufficient condition for full linearization via dynamic state feedback, in Proc. 25th IEEE Conf. on Decision and Control, Athens (1986) 203–207.
- P. Martin, Contribution à l'étude des systèmes différentiellement plats. Ph.D. thesis, École des Mines, Paris (1992).
- P. Martin, R.M. Murray and P. Rouchon, Flat systems, in Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes VIII, (electronic). Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 705–768.
- P. Martin and P. Rouchon, Feedback linearization and driftless systems. Math. Control Signals Syst.7 (1994) 235–254.
- J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization. Banach Center Publications32 (1995) 319–339.
- J.-B. Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs. ESAIM Control Optim. Calc. Var.2 (1997) 151–230. . URIhttp://www.edpsciences.org/cocv/
- J.F. Ritt, Differential Algebra. AMS Coll. Publ. XXXIII. New York (1950).
- P. Rouchon, Flatness and oscillatory control: some theoretical results and case studies. Tech. report PR412, CAS, École des Mines, Paris (1992).
- P. Rouchon, Necessary condition and genericity of dynamic feedback linearization. J. Math. Syst. Estim. Contr.4 (1994) 1–14.
- W.M. Sluis, A necessary condition for dynamic feedback linearization. Syst. Control Lett.21 (1993) 277–283.
- M. van Nieuwstadt, M. Rathinam and R. Murray, Differential flatness and absolute equivalence of nonlinear control systems. SIAM J. Control Optim.36 (1998) 1225–1239. . URIhttp://epubs.siam.org:80/sam-bin/dbq/article/27402
- P. Zervos, Le problème de Monge. Mémorial des Sciences Mathématiques, LIII (1932).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.