# Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states

David Avanessoff; Jean-Baptiste Pomet

ESAIM: Control, Optimisation and Calculus of Variations (2007)

- Volume: 13, Issue: 2, page 237-264
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topAvanessoff, David, and Pomet, Jean-Baptiste. "Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states." ESAIM: Control, Optimisation and Calculus of Variations 13.2 (2007): 237-264. <http://eudml.org/doc/250034>.

@article{Avanessoff2007,

abstract = {
This paper studies Monge parameterization, or differential flatness, of control-affine systems with four states and two controls. Some of them are known to be flat, and this implies
admitting a Monge parameterization. Focusing on systems outside this class, we describe the only possible structure of such a parameterization for these systems, and give a
lower bound on the order of this parameterization, if it exists. This lower-bound is good enough to recover the known results about “(x,u)-flatness” of these systems, with much more elementary
techniques.
},

author = {Avanessoff, David, Pomet, Jean-Baptiste},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Dynamic feedback linearization; flat control systems; Monge
problem; Monge equations; Monge problem},

language = {eng},

month = {5},

number = {2},

pages = {237-264},

publisher = {EDP Sciences},

title = {Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states},

url = {http://eudml.org/doc/250034},

volume = {13},

year = {2007},

}

TY - JOUR

AU - Avanessoff, David

AU - Pomet, Jean-Baptiste

TI - Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2007/5//

PB - EDP Sciences

VL - 13

IS - 2

SP - 237

EP - 264

AB -
This paper studies Monge parameterization, or differential flatness, of control-affine systems with four states and two controls. Some of them are known to be flat, and this implies
admitting a Monge parameterization. Focusing on systems outside this class, we describe the only possible structure of such a parameterization for these systems, and give a
lower bound on the order of this parameterization, if it exists. This lower-bound is good enough to recover the known results about “(x,u)-flatness” of these systems, with much more elementary
techniques.

LA - eng

KW - Dynamic feedback linearization; flat control systems; Monge
problem; Monge equations; Monge problem

UR - http://eudml.org/doc/250034

ER -

## References

top- E. Aranda-Bricaire, C.H. Moog and J.-B. Pomet, An infinitesimal Brunovsky form for nonlinear systems with applications to dynamic linearization. Banach Center Publications32 (1995) 19–33. Zbl0844.93024
- D. Avanessoff, Linéarisation dynamique des systèmes non linéaires et paramétrage de l'ensemble des solutions. Ph.D. thesis, University of Nice-Sophia Antipolis (June 2005).
- R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmitt and P.A. Griffiths, Exterior Differential Systems, Springer-Verlag, M.S.R.I. Publications 18 (1991).
- É. Cartan, Sur l'intégration de certains systèmes indéterminés d'équations différentielles. J. reine angew. Math.145 (1915) 86–91. Zbl45.0472.03
- B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization. Syst. Control Lett.13 (1989) 143–151. Zbl0684.93043
- B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optim.29 (1991) 38–57. Zbl0739.93021
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci. ParisSér. I315 (1992) 619–624. Zbl0776.93038
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and examples. Int. J. Control61 (1995) 1327–1361. Zbl0838.93022
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control44 (1999) 922–937. Zbl0964.93028
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Some open questions related to flat nonlinear systems, in Open problems in mathematical systems and control theory, Springer, London (1999) 99–103.
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities. Springer-Verlag, New York, GTM 14 (1973). Zbl0294.58004
- D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen. Math. Annalen73 (1912) 95–108. Zbl43.0378.01
- E. Hubert, Notes on triangular sets and triangulation-decomposition algorithms. I: Polynomial systems. II: Differential systems. In F. Winkler et al. eds., Symbolic and Numerical Scientific Computing2630, 1–87. Lect. Notes Comput. Sci. (2003). Zbl1022.12005
- A. Isidori, C.H. Moog and A. de Luca, A sufficient condition for full linearization via dynamic state feedback, in Proc. 25th IEEE Conf. on Decision and Control, Athens (1986) 203–207.
- P. Martin, Contribution à l'étude des systèmes différentiellement plats. Ph.D. thesis, École des Mines, Paris (1992).
- P. Martin, R.M. Murray and P. Rouchon, Flat systems, in Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes VIII, (electronic). Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 705–768. Zbl1013.93007
- P. Martin and P. Rouchon, Feedback linearization and driftless systems. Math. Control Signals Syst.7 (1994) 235–254. Zbl0842.93015
- J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization. Banach Center Publications32 (1995) 319–339. Zbl0838.93019
- J.-B. Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs. ESAIM Control Optim. Calc. Var.2 (1997) 151–230. . Zbl0898.93007URIhttp://www.edpsciences.org/cocv/
- J.F. Ritt, Differential Algebra. AMS Coll. Publ. XXXIII. New York (1950).
- P. Rouchon, Flatness and oscillatory control: some theoretical results and case studies. Tech. report PR412, CAS, École des Mines, Paris (1992).
- P. Rouchon, Necessary condition and genericity of dynamic feedback linearization. J. Math. Syst. Estim. Contr.4 (1994) 1–14. Zbl0818.93012
- W.M. Sluis, A necessary condition for dynamic feedback linearization. Syst. Control Lett.21 (1993) 277–283.
- M. van Nieuwstadt, M. Rathinam and R. Murray, Differential flatness and absolute equivalence of nonlinear control systems. SIAM J. Control Optim.36 (1998) 1225–1239. . Zbl0910.93023URIhttp://epubs.siam.org:80/sam-bin/dbq/article/27402
- P. Zervos, Le problème de Monge. Mémorial des Sciences Mathématiques, LIII (1932).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.