# Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization

E. Aranda-Bricaire; C. Moog; J. Pomet

Banach Center Publications (1995)

- Volume: 32, Issue: 1, page 19-33
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topAranda-Bricaire, E., Moog, C., and Pomet, J.. "Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization." Banach Center Publications 32.1 (1995): 19-33. <http://eudml.org/doc/262767>.

@article{Aranda1995,

abstract = {We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.},

author = {Aranda-Bricaire, E., Moog, C., Pomet, J.},

journal = {Banach Center Publications},

keywords = {flat systems; dynamic feedback linearization; Brunovský canonical form; nonlinear control systems; endogenous dynamic feedback; Pfaffian systems; linearized control system; canonical form; nonlinear},

language = {eng},

number = {1},

pages = {19-33},

title = {Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization},

url = {http://eudml.org/doc/262767},

volume = {32},

year = {1995},

}

TY - JOUR

AU - Aranda-Bricaire, E.

AU - Moog, C.

AU - Pomet, J.

TI - Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization

JO - Banach Center Publications

PY - 1995

VL - 32

IS - 1

SP - 19

EP - 33

AB - We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.

LA - eng

KW - flat systems; dynamic feedback linearization; Brunovský canonical form; nonlinear control systems; endogenous dynamic feedback; Pfaffian systems; linearized control system; canonical form; nonlinear

UR - http://eudml.org/doc/262767

ER -

## References

top- [1] E. Aranda, C. H. Moog and J.-B. Pomet, A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automatic Control, 40 (1995), 127-132. Zbl0844.93025
- [2] E. Aranda, C. H. Moog and J.-B. Pomet, Feedback linearization: a linear algebraic approach, in: 22nd IEEE Conf. on Dec. and Cont., Dec. 1993. Zbl0844.93025
- [3] P. Brunovský, A classification of linear controllable systems, Kybernetika 6 (1970), 176-188. Zbl0199.48202
- [4] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Syst. & Contr. Lett. 13 (1989), 143-151. Zbl0684.93043
- [5] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic feedback linearization, SIAM J. Contr. Opt. 29 (1991), 38-57. Zbl0739.93021
- [6] J.-M. Coron, Linearized control systems and applications to smooth stabilization, SIAM J. Contr. Opt. 32 (1994), 358-386. Zbl0796.93097
- [7] M. D. Di Benedetto, J. Grizzle and C. H. Moog, Rank invariants of nonlinear systems, SIAM J. Contr. Opt. 27 (1989), 658-672. Zbl0696.93033
- [8] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. Zbl0701.93048
- [9] M. Fliess, Some remarks on the Brunovský canonical form, preprint, L.S.S., Ec. Sup. d'Elec., Gif-sur-Yvette, France, 1992, to appear in Kybernetika.
- [10] M. Fliess and S. T. Glad, An algebraic approach to linear and nonlinear control, in: H. L. Trentelman and J. C. Willems (eds.), Essays on Control: Perspectives in the Theory and its Applications, PSCT 14, Birkhäuser, Boston, 1993. Zbl0838.93021
- [11] M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: 2nd. IFAC NOLCOS Symposium, 1992, 408-412.
- [12] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sc. Paris, 315-I (1992), 619-624. Zbl0776.93038
- [13] A. Ilchmann, I. Nürnberger and W. Schmale, Time-varying polynomial matrix systems, Int. J. Control 40 (1984), 329-362. Zbl0545.93045
- [14] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: 2nd. IFAC NOLCOS Symposium, 1992, 393-397.
- [15] B. Jakubczyk, Dynamic feedback equivalence of nonlinear control systems, preprint, 1993.
- [16] P. Martin, Contribution à l'étude des systèmes non linéaires différentiellement plats, Thèse de Doctorat, Ecole des Mines de Paris, 1992.
- [17] P. Martin, A geometric sufficient conditions for flatness of systems with m inputs and m+1 states, in: 22nd IEEE Conf. on Dec. and Cont., Dec. 1993, 3431-3435.
- [18] P. Martin, A criterion for flatness with structure {1,...,1,2}, preprint, 1992.
- [19] P. Martin and P. Rouchon, Systems without drift and flatness, in: Int. Symp. on Math. Theory on Networks and Syst., Regensburg, August 1993. Zbl0925.93294
- [20] J.-B. Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs, preprint, 1993, INRIA report No 2314.
- [21] J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, this volume, 319-339. Zbl0838.93019
- [22] J.-B. Pomet, C. H. Moog and E. Aranda, A non-exact Brunovský form and dynamic feedback linearization, in: Proc. 31st. IEEE Conf. Dec. Cont., 1992, 2012-2017.
- [23] E. D. Sontag, Finite-dimensional open-loop control generators for nonlinear systems, Int. J. Control 47 (1988), 537-556. Zbl0641.93035
- [24] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Diff. Eq. 12 (1972), 95-116. Zbl0242.49040
- [25] W. A. Wolovich, Linear Multivariable Systems, Applied Math. Sci. 11, Springer, 1974. Zbl0291.93002

## Citations in EuDML Documents

top- Jean-Baptiste Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs
- David Avanessoff, Jean-Baptiste Pomet, Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states
- Shun-Jie Li, Witold Respondek, Flat outputs of two-input driftless control systems
- Shun-Jie Li, Witold Respondek, Flat outputs of two-input driftless control systems
- Shun-Jie Li, Witold Respondek, Flat outputs of two-input driftless control systems

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.