Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization

E. Aranda-Bricaire; C. Moog; J. Pomet

Banach Center Publications (1995)

  • Volume: 32, Issue: 1, page 19-33
  • ISSN: 0137-6934

Abstract

top
We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.

How to cite

top

Aranda-Bricaire, E., Moog, C., and Pomet, J.. "Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization." Banach Center Publications 32.1 (1995): 19-33. <http://eudml.org/doc/262767>.

@article{Aranda1995,
abstract = {We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.},
author = {Aranda-Bricaire, E., Moog, C., Pomet, J.},
journal = {Banach Center Publications},
keywords = {flat systems; dynamic feedback linearization; Brunovský canonical form; nonlinear control systems; endogenous dynamic feedback; Pfaffian systems; linearized control system; canonical form; nonlinear},
language = {eng},
number = {1},
pages = {19-33},
title = {Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization},
url = {http://eudml.org/doc/262767},
volume = {32},
year = {1995},
}

TY - JOUR
AU - Aranda-Bricaire, E.
AU - Moog, C.
AU - Pomet, J.
TI - Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 19
EP - 33
AB - We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.
LA - eng
KW - flat systems; dynamic feedback linearization; Brunovský canonical form; nonlinear control systems; endogenous dynamic feedback; Pfaffian systems; linearized control system; canonical form; nonlinear
UR - http://eudml.org/doc/262767
ER -

References

top
  1. [1] E. Aranda, C. H. Moog and J.-B. Pomet, A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automatic Control, 40 (1995), 127-132. Zbl0844.93025
  2. [2] E. Aranda, C. H. Moog and J.-B. Pomet, Feedback linearization: a linear algebraic approach, in: 22nd IEEE Conf. on Dec. and Cont., Dec. 1993. Zbl0844.93025
  3. [3] P. Brunovský, A classification of linear controllable systems, Kybernetika 6 (1970), 176-188. Zbl0199.48202
  4. [4] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Syst. & Contr. Lett. 13 (1989), 143-151. Zbl0684.93043
  5. [5] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic feedback linearization, SIAM J. Contr. Opt. 29 (1991), 38-57. Zbl0739.93021
  6. [6] J.-M. Coron, Linearized control systems and applications to smooth stabilization, SIAM J. Contr. Opt. 32 (1994), 358-386. Zbl0796.93097
  7. [7] M. D. Di Benedetto, J. Grizzle and C. H. Moog, Rank invariants of nonlinear systems, SIAM J. Contr. Opt. 27 (1989), 658-672. Zbl0696.93033
  8. [8] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. Zbl0701.93048
  9. [9] M. Fliess, Some remarks on the Brunovský canonical form, preprint, L.S.S., Ec. Sup. d'Elec., Gif-sur-Yvette, France, 1992, to appear in Kybernetika. 
  10. [10] M. Fliess and S. T. Glad, An algebraic approach to linear and nonlinear control, in: H. L. Trentelman and J. C. Willems (eds.), Essays on Control: Perspectives in the Theory and its Applications, PSCT 14, Birkhäuser, Boston, 1993. Zbl0838.93021
  11. [11] M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: 2nd. IFAC NOLCOS Symposium, 1992, 408-412. 
  12. [12] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sc. Paris, 315-I (1992), 619-624. Zbl0776.93038
  13. [13] A. Ilchmann, I. Nürnberger and W. Schmale, Time-varying polynomial matrix systems, Int. J. Control 40 (1984), 329-362. Zbl0545.93045
  14. [14] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: 2nd. IFAC NOLCOS Symposium, 1992, 393-397. 
  15. [15] B. Jakubczyk, Dynamic feedback equivalence of nonlinear control systems, preprint, 1993. 
  16. [16] P. Martin, Contribution à l'étude des systèmes non linéaires différentiellement plats, Thèse de Doctorat, Ecole des Mines de Paris, 1992. 
  17. [17] P. Martin, A geometric sufficient conditions for flatness of systems with m inputs and m+1 states, in: 22nd IEEE Conf. on Dec. and Cont., Dec. 1993, 3431-3435. 
  18. [18] P. Martin, A criterion for flatness with structure {1,...,1,2}, preprint, 1992. 
  19. [19] P. Martin and P. Rouchon, Systems without drift and flatness, in: Int. Symp. on Math. Theory on Networks and Syst., Regensburg, August 1993. Zbl0925.93294
  20. [20] J.-B. Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs, preprint, 1993, INRIA report No 2314. 
  21. [21] J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, this volume, 319-339. Zbl0838.93019
  22. [22] J.-B. Pomet, C. H. Moog and E. Aranda, A non-exact Brunovský form and dynamic feedback linearization, in: Proc. 31st. IEEE Conf. Dec. Cont., 1992, 2012-2017. 
  23. [23] E. D. Sontag, Finite-dimensional open-loop control generators for nonlinear systems, Int. J. Control 47 (1988), 537-556. Zbl0641.93035
  24. [24] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Diff. Eq. 12 (1972), 95-116. Zbl0242.49040
  25. [25] W. A. Wolovich, Linear Multivariable Systems, Applied Math. Sci. 11, Springer, 1974. Zbl0291.93002

Citations in EuDML Documents

top
  1. Jean-Baptiste Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs
  2. David Avanessoff, Jean-Baptiste Pomet, Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states
  3. Shun-Jie Li, Witold Respondek, Flat outputs of two-input driftless control systems
  4. Shun-Jie Li, Witold Respondek, Flat outputs of two-input driftless control systems
  5. Shun-Jie Li, Witold Respondek, Flat outputs of two-input driftless control systems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.