A Mixed Formulation of the Monge-Kantorovich Equations
John W. Barrett; Leonid Prigozhin
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 41, Issue: 6, page 1041-1060
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio, Optimal transport maps in Monge-Kantorovich problem, Proceedings of the ICM (Beijing, 2002) III. Higher Ed. Press, Beijing (2002) 131–140.
- L. Ambrosio, Lecture notes on optimal transport, in Mathematical Aspects of Evolving Interfaces, L. Ambrosio et al. Eds., Lect. Notes in Math.1812 (2003) 1–52.
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000).
- S. Angenent, S. Haker and A. Tannenbaum, Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal.35 (2003) 61–97.
- G. Aronson, L.C. Evans and Y. Wu, Fast/slow diffusion and growing sandpiles. J. Diff. Eqns.131 (1996) 304–335.
- C. Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math.5 (2005) 333–361.
- J.W. Barrett and L. Prigozhin, Dual formulations in critical state problems. Interfaces Free Boundaries8 (2006) 347–368.
- J.W. Barrett and L. Prigozhin, Partial L1 Monge-Kantorovich problem: variational formulation and numerical approximation. (Submitted).
- J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math.84 (2000) 375–393.
- G. Bouchitté, G. Buttazzo and P. Seppecher, Shape optimization solutions via Monge-Kantorovich equation. C.R. Acad. Sci. Paris324-I (1997) 1185–1191.
- L.A. Caffarelli and R.J. McCann, Free boundaries in optimal transport and Monge-Ampère obstacle problems. Ann. Math. (to appear).
- R. De Arcangelis and E. Zappale, The relaxation of some classes of variational integrals with pointwise continuous-type gradient constraints. Appl. Math. Optim.51 (2005) 251–277.
- I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976).
- L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, C.B.M.S.74. AMS, Providence RI (1990).
- L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current Developments in Mathematics. Int. Press, Boston (1997) 65–126.
- L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc.137 (1999).
- M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal.18 (1998) 121–132.
- M. Farhloul and H. Manouzi, On a mixed finite element method for the p-Laplacian. Can. Appl. Math. Q.8 (2000) 67–78.
- M. Feldman, Growth of a sandpile around an obstacle, in Monge Ampere Equation: Applications to Geometry and Optimization, L.A Caffarelli and M. Milman Eds., Contemp. Math.226, AMS, Providence (1999) 55–78.
- G.B. Folland, Real Analysis: Modern Techniques and their Applications (Second Edition). Wiley-Interscience, New York (1984).
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986).
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Massachusetts (1985).
- A. Pratelli, Equivalence between some definitions for the optimal mass transport problem and for transport density on manifolds. Ann. Mat. Pura Appl.184 (2005) 215–238.
- L. Prigozhin, Variational model for sandpile growth. Eur. J. Appl. Math.7 (1996) 225–235.
- L. Prigozhin, Solutions to Monge-Kantorovich equations as stationary points of a dynamical system. arXiv:math.OC/0507330, http://xxx.tau.ac.il/abs/math.OC/ 0507330 (2005).
- L. Rüschendorf and L. Uckelmann, Numerical and analytical results for the transportation problem of Monge-Kantorovich. Metrika51 (2000) 245–258.
- G. Strang, L1 and L∞ approximation of vector fields in the plane. Lecture Notes in Num. Appl. Anal.5 (1982) 273–288.
- C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics58. AMS, Providence RI (2003).