A quasi-variational inequality problem arising in the modeling of growing sandpiles
John W. Barrett; Leonid Prigozhin
- Volume: 47, Issue: 4, page 1133-1165
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, Amsterdam (2003). Zbl1098.46001MR2424078
- [2] G. Aronson, L.C. Evans and Y. Wu, Fast/slow diffusion and growing sandpiles. J. Differ. Eqn.131 (1996) 304–335. Zbl0864.35057MR1419017
- [3] C. Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math.5 (2005) 333–361. Zbl1086.65107MR2194203
- [4] J.W. Barrett and L. Prigozhin, Dual formulations in critical state problems. Interfaces Free Bound.8 (2006) 347–368. Zbl1108.35098MR2273233
- [5] J.W. Barrett and L. Prigozhin, A mixed formulation of the Monge-Kantorovich equations. ESAIM: M2AN 41 (2007) 1041–1060. Zbl1132.35333MR2377106
- [6] J.W. Barrett and L. Prigozhin, A quasi-variational inequality problem in superconductivity. M3AS 20 (2010) 679–706. Zbl1225.35133MR2652615
- [7] S. Dumont and N. Igbida, On a dual formulation for the growing sandpile problem. Euro. J. Appl. Math.20 (2008) 169–185. Zbl1158.74012MR2491122
- [8] S. Dumont and N. Igbida, On the collapsing sandpile problem. Commun. Pure Appl. Anal.10 (2011) 625–638. Zbl1244.35068MR2754292
- [9] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976). Zbl0322.90046MR463994
- [10] L.C. Evans, M. Feldman and R.F. Gariepy, Fast/slow diffusion and collapsing sandpiles. J. Differ. Eqs.137 (1997) 166–209. Zbl0879.35019MR1451539
- [11] M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal.18 (1998) 121–132. Zbl0909.65086MR1492051
- [12] G.B. Folland, Real Analysis: Modern Techniques and their Applications, 2nd Edition. Wiley-Interscience, New York (1984). Zbl0924.28001MR767633
- [13] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd Edition. Springer, Berlin (1983). Zbl1042.35002MR737190
- [14] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984). Zbl1139.65050
- [15] L. Prigozhin, A quasivariational inequality in the problem of filling a shape. U.S.S.R. Comput. Math. Phys.26 (1986) 74–79. MR851756
- [16] L. Prigozhin, A variational model of bulk solids mechanics and free-surface segregation. Chem. Eng. Sci.48 (1993) 3647–3656.
- [17] L. Prigozhin, Sandpiles and river networks: extended systems with nonlocal interactions. Phys. Rev. E49 (1994) 1161–1167. MR1379784
- [18] L. Prigozhin, Variational model for sandpile growth. Eur. J. Appl. Math.7 (1996) 225–235. Zbl0913.73079MR1401168
- [19] J.F. Rodrigues and L. Santos, Quasivariational solutions for first order quasilinear equations with gradient constraint. Arch. Ration. Mech. Anal.205 (2012) 493–514. Zbl1255.49020MR2947539
- [20] J. Simon, Compact sets in the space Lp(0,T;B). Annal. Math. Pura. Appl.146 (1987) 65–96. Zbl0629.46031MR916688
- [21] J. Simon, On the existence of the pressure for solutions of the variational Navier-Stokes equations. J. Math. Fluid Mech.1 (1999) 225–234. Zbl0961.35107MR1738751
- [22] R. Temam, Mathematical Methods in Plasticity. Gauthier-Villars, Paris (1985).