Best N-term approximation in electronic structure calculations. II. Jastrow factors

Heinz-Jürgen Flad; Wolfgang Hackbusch; Reinhold Schneider

ESAIM: Mathematical Modelling and Numerical Analysis (2007)

  • Volume: 41, Issue: 2, page 261-279
  • ISSN: 0764-583X

Abstract

top
We present a novel application of best N-term approximation theory in the framework of electronic structure calculations. The paper focusses on the description of electron correlations within a Jastrow-type ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymptotic behaviour of two-particle correlation functions ( 2 ) near electron-electron and electron-nuclear cusps. Based on Nitsche's characterization of best N-term approximation spaces A q α ( H 1 ) , we prove that ( 2 ) A q α ( H 1 ) for q>1 and α = 1 q - 1 2 with respect to a certain class of anisotropic wavelet tensor product bases. Computational arguments are given in favour of this specific class compared to other possible tensor product bases. Finally, we compare the approximation properties of wavelet bases with standard Gaussian-type basis sets frequently used in quantum chemistry.


How to cite

top

Flad, Heinz-Jürgen, Hackbusch, Wolfgang, and Schneider, Reinhold. "Best N-term approximation in electronic structure calculations. II. Jastrow factors." ESAIM: Mathematical Modelling and Numerical Analysis 41.2 (2007): 261-279. <http://eudml.org/doc/250137>.

@article{Flad2007,
abstract = { We present a novel application of best N-term approximation theory in the framework of electronic structure calculations. The paper focusses on the description of electron correlations within a Jastrow-type ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymptotic behaviour of two-particle correlation functions $\mathcal\{F\}^\{(2)\}$ near electron-electron and electron-nuclear cusps. Based on Nitsche's characterization of best N-term approximation spaces $A_\{q\}^\{\alpha\}(H^\{1\})$, we prove that $\left. \mathcal\{F\}^\{(2)\}\in A_\{q\}^\{\alpha\}(H^\{1\})\right. $ for q>1 and $\alpha=\frac\{1\}\{q\}-\frac\{1\}\{2\}$ with respect to a certain class of anisotropic wavelet tensor product bases. Computational arguments are given in favour of this specific class compared to other possible tensor product bases. Finally, we compare the approximation properties of wavelet bases with standard Gaussian-type basis sets frequently used in quantum chemistry.
},
author = {Flad, Heinz-Jürgen, Hackbusch, Wolfgang, Schneider, Reinhold},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Best N-term approximation; wavelets; electron correlations; Jastrow factor.},
language = {eng},
month = {6},
number = {2},
pages = {261-279},
publisher = {EDP Sciences},
title = {Best N-term approximation in electronic structure calculations. II. Jastrow factors},
url = {http://eudml.org/doc/250137},
volume = {41},
year = {2007},
}

TY - JOUR
AU - Flad, Heinz-Jürgen
AU - Hackbusch, Wolfgang
AU - Schneider, Reinhold
TI - Best N-term approximation in electronic structure calculations. II. Jastrow factors
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/6//
PB - EDP Sciences
VL - 41
IS - 2
SP - 261
EP - 279
AB - We present a novel application of best N-term approximation theory in the framework of electronic structure calculations. The paper focusses on the description of electron correlations within a Jastrow-type ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymptotic behaviour of two-particle correlation functions $\mathcal{F}^{(2)}$ near electron-electron and electron-nuclear cusps. Based on Nitsche's characterization of best N-term approximation spaces $A_{q}^{\alpha}(H^{1})$, we prove that $\left. \mathcal{F}^{(2)}\in A_{q}^{\alpha}(H^{1})\right. $ for q>1 and $\alpha=\frac{1}{q}-\frac{1}{2}$ with respect to a certain class of anisotropic wavelet tensor product bases. Computational arguments are given in favour of this specific class compared to other possible tensor product bases. Finally, we compare the approximation properties of wavelet bases with standard Gaussian-type basis sets frequently used in quantum chemistry.

LA - eng
KW - Best N-term approximation; wavelets; electron correlations; Jastrow factor.
UR - http://eudml.org/doc/250137
ER -

References

top
  1. S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: Bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes 29. Princeton University Press (1982).  Zbl0503.35001
  2. H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numer.13 (2004) 147–269.  Zbl1118.65388
  3. C.E. Campbell, E. Krotscheck and T. Pang, Electron correlations in atomic systems. Phys. Rep.223 (1992) 1–42.  
  4. D. Ceperley, Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions. Phys. Rev. B18 (1978) 3126–3138.  
  5. J.W. Clark, Variational theory of nuclear matter, in Progress in Nuclear and Particle Physics, Vol. 2, D.H. Wilkinson Ed., Pergamon, Oxford (1979) 89–199.  
  6. E.T. Copson, Asymptotic Expansions. Cambridge University Press, Cambridge (1967).  Zbl0123.26001
  7. W. Dahmen, S. Prößdorf and R. Schneider, Wavelet approximation methods for pseudodifferential equations. II: Matrix compression and fast solution. Adv. Comp. Maths.1 (1993) 259–335.  Zbl0826.65093
  8. W. Dahmen, S. Prößdorf and R. Schneider, Wavelet approximation methods for pseudodifferential equations. I: Stability and convergence. Math. Z.215 (1994) 583–620.  Zbl0794.65082
  9. R.A. DeVore, Nonlinear approximation. Acta Numer.7 (1998) 51–150.  Zbl0931.65007
  10. R.A. DeVore, B. Jawerth and V. Popov, Compression of wavelet decompositions. Amer. J. Math.114 (1992) 737–785.  Zbl0764.41024
  11. R.A. DeVore, S.V. Konyagin and V.N. Temlyakov, Hyperbolic wavelet approximation. Constr. Approx.14 (1998) 1–26.  Zbl0895.41016
  12. N.D. Drummond, M.D. Towler and R.J. Needs, Jastrow correlation factor for atoms, molecules, and solids. Phys. Rev. B70 (2004) 235119.  
  13. H.-J. Flad and A. Savin, Transfer of electron correlation from the electron gas to inhomogeneous systems via Jastrow factors. Phys. Rev. A.50 (1994) 3742–3746.  
  14. H.-J. Flad and A. Savin, A new Jastrow factor for atoms and molecules, using two-electron systems as a guiding principle. J. Chem. Phys.103 (1995) 691–697.  
  15. H.-J. Flad, W. Hackbusch, D. Kolb and R. Schneider, Wavelet approximation of correlated wavefunctions. I. Basics. J. Chem. Phys.116 (2002) 9641–9657.  
  16. H.-J. Flad, W. Hackbusch, H. Luo and D. Kolb, Diagrammatic multiresolution analysis for electron correlations. Phys. Rev. B71 (2005) 125115.  
  17. H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations. I. One-electron reduced density matrix. ESAIM: M2AN40 (2006) 49–61.  Zbl1100.81050
  18. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Ostergaard S orensen, Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys.255 (2005) 183–227.  Zbl1075.35063
  19. D.E. Freund, B.D. Huxtable and J.D. Morgan III, Variational calculations on the helium isoelectronic sequence. Phys. Rev. A29 (1984) 980–982.  
  20. P. Fulde, Electron Correlations in Molecules and Solids, 2nd edition. Springer, Berlin (1993).  
  21. P. Fulde, Ground-state wave functions and energies of solids. Int. J. Quant. Chem.76 (2000) 385–395.  
  22. J. Garcke and M. Griebel, On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comp. Phys.165 (2000) 694–716.  Zbl0979.65101
  23. R. Gaudoin, M. Nekovee, W.M.C. Foulkes, R.J. Needs and G. Rajagopal, Inhomogeneous random-phase approximation and many-electron trial wave functions. Phys. Rev. B63 (2001) 115115.  
  24. W. Hackbusch, B.N. Khoromskij and E. Tyrtyshnikov, Hierarchical Kronecker tensor-product approximation. J. Numer. Math.13 (2005) 119–156.  Zbl1081.65035
  25. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen and A.K. Wilson, Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett.286 (1998) 243–252.  
  26. T. Helgaker, W. Klopper, H. Koch and J. Noga, Basis-set convergence of correlated calculations on water. J. Chem. Phys.106 (1997) 9639–9646.  
  27. T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory. Wiley, New York (1999).  
  28. R.N. Hill, Rates of convergence and error estimation formulas for the Rayleigh-Ritz variational method. J. Chem. Phys.83 (1985) 1173–1196.  
  29. M. Hoffmann-Ostenhof and R. Seiler, Cusp conditions for eigenfunctions of n-electron systems. Phys. Rev. A23 (1981) 21–23.  
  30. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and H. Stremnitzer, Local properties of Coulombic wave functions. Commun. Math. Phys.163 (1994) 185–215.  Zbl0812.35105
  31. C.-J. Huang, C.J. Umrigar and M.P. Nightingale, Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations. J. Chem. Phys.107 (1997) 3007–3013.  
  32. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math.10 (1957) 151–177.  Zbl0077.20904
  33. E. Krotscheck, Variations on the electron gas. Ann. Phys. (N.Y.)155 (1984) 1–55.  
  34. E. Krotscheck, Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids. Phys. Rev. B31 (1985) 4267–4278.  
  35. E. Krotscheck, W. Kohn and G.-X. Qian, Theory of inhomogeneous quantum systems. IV. Variational calculations of metal surfaces. Phys. Rev. B32 (1985) 5693–5712.  
  36. W. Kutzelnigg, r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theoret. Chim. Acta68 (1985) 445–469.  
  37. W. Kutzelnigg and J.D. Morgan III, Rates of convergence of the partial-wave expansions of atomic correlation energies. J. Chem. Phys.96 (1992) 4484–4508.  
  38. H. Luo, D. Kolb, H.-J. Flad, W. Hackbusch and T. Koprucki, Wavelet approximation of correlated wavefunctions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys.117 (2002) 3625–3638.  
  39. H. Luo, D. Kolb, H.-J. Flad and W. Hackbusch, Perturbative calculation of Jastrow factors. Phys. Rev. B.75 (2007) 125111.  
  40. P.-A. Nitsche, Sparse approximation of singularity functions. Constr. Approx.21 (2005) 63–81.  Zbl1073.65118
  41. P.-A. Nitsche, Best N-term approximation spaces for tensor product wavelet bases. Constr. Approx.24 (2006) 49–70.  Zbl1101.41021
  42. T. Pang, C.E. Campbell and E. Krotscheck, Local structure of electron correlations in atomic systems. Chem. Phys. Lett.163 (1989) 537–541.  
  43. K.E. Schmidt and J.W. Moskowitz, Correlated Monte Carlo wave functions for the atoms He through Ne. J. Chem. Phys.93 (1990) 4172–4178.  
  44. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press (1993).  Zbl0821.42001
  45. G. Stollhoff, The local ansatz extended. J. Chem. Phys.105 (1996) 227–234.  
  46. G. Stollhoff and P. Fulde, On the computation of electronic correlation energies within the local approach. J. Chem. Phys.73 (1980) 4548–4561.  
  47. J.D. Talman, Linked-cluster expansion for Jastrow-type wave functions and its application to the electron-gas problem. Phys. Rev. A10 (1974) 1333–1344.  
  48. J.D. Talman, Variational calculation for the electron gas at intermediate densities. Phys. Rev. A13 (1976) 1200–1208.  
  49. C.J. Umrigar, K.G. Wilson and J.W. Wilkins, Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett.60 (1988) 1719–1722.  
  50. A.J. Williamson, S.D. Kenny, G. Rajagopal, A.J. James, R.J. Needs, L.M. Fraser, W.M.C. Foulkes and P. Maccallum, Optimized wavefunctions for quantum Monte Carlo studies of atoms and solids. Phys. Rev. B53 (1996) 9640–9648.  
  51. H. Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math.98 (2004) 731–759.  Zbl1062.35100
  52. H. Yserentant, Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math.101 (2005) 381–389.  Zbl1084.65125

Citations in EuDML Documents

top
  1. Markus Bachmayr, Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation
  2. Markus Bachmayr, Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation
  3. Harry Yserentant, The mixed regularity of electronic wave functions multiplied by explicit correlation factors
  4. Markus Bachmayr, Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation
  5. Harry Yserentant, The mixed regularity of electronic wave functions multiplied by explicit correlation factors
  6. Markus Bachmayr, Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.