Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 6, page 1337-1362
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Pure and Applied Mathematics Series, 2nd edition. Academic Press 140 (2003).
- S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations : Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes. Princeton University Press (1982).
- M. Bachmayr, Integration of products of Gaussians and wavelets with applications to electronic structure calculations. Preprint AICES, RWTH Aachen (2012).
- R. Balder and C. Zenger, The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput.17 (1996) 631–646.
- G. Beylkin, On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal.29 (1992) 1716–1740.
- S.F. Boys and N.C. Handy, The determination of energies and wavefunctions with full electronic correlation. Proc. R. Soc. Lond. A310 (1969) 43–61.
- D. Braess and W. Hackbusch, On the efficient computation of high-dimensional integrals and the approximation by exponential sums, in Multiscale, Nonlinear and Adaptive Approximation, edited by R. DeVore and A. Kunoth. Springer, Berlin, Heidelberg (2009).
- H.-J. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Ph.D. thesis, Technische Universität München (1992).
- F. Chatelin, Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics. Academic Press (1983).
- S.R. Chinnamsetty, M. Espig, B.N. Khoromskij, W. Hackbusch and H.-J. Flad, Tensor product approximation with optimal rank in quantum chemistry. J. Chem. Phys.127 (2007) 084110.
- A. Cohen, Numerical Analysis of Wavelet Methods. Stud. Math. Appl.32 (2003).
- W. Dahmen and C.A. Micchelli, Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal.30 (1993) 507–537.
- I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math.41 (1988) 909–996.
- T.J. Dijkema, C. Schwab and R. Stevenson, An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx.30 (2009) 423–455.
- G. Donovan, J. Geronimo and D. Hardin, Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math. Anal.27 (1996) 1791–1815.
- G. Donovan, J. Geronimo and D. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal.30 (1999) 1029–1056.
- H.-J. Flad, W. Hackbusch, D. Kolb and R. Schneider, Wavelet approximation of correlated wave functions. I. Basics. J. Chem. Phys.116 (2002) 9641–9657.
- H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations. II. Jastrow factors. ESAIM : M2AN41 (2007) 261.
- H.-J. Flad, W. Hackbusch, B.N. Khoromskij and R. Schneider, Matrix Methods : Theory, Algorithms and Applications, in Concepts of Data-Sparse Tensor-Product Approximation in Many-Particle Modelling. World Scientific (2010) 313–347.
- S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Sharp regularity results for many-electron wave functions. Commun. Math. Phys.255 (2005) 183–227.
- L. Genovese, T. Deutsch, A. Neelov, S. Goedecker and G. Beylkin, Efficient solution of poisson’s equation with free boundary conditions. J. Chem. Phys.125 (2006) 074105.
- L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman and R. Schneider, Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys.129 (2008) 014109.
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin, Heidelberg (1998).
- M. Griebel and J. Hamaekers, A wavelet based sparse grid method for the electronic Schrödinger equation, in Proc. of the International Congress of Mathematicians, edited by M. Sanz-Solé, J. Soria, J. Varona and J. Verdera III (2006) 1473–1506.
- M. Griebel and J. Hamaekers, Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation. Z. Phys. Chem.224 (2010) 527–543. Also available as INS Preprint No. 0911.
- M. Griebel and S. Knapek, Optimized tensor-product approximation spaces. Constr. Approx.16 (2000) 525.
- M. Griebel and P. Oswald, Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math.4 (1995) 171–206.
- J. Hamaekers, Tensor Product Multiscale Many-Particle Spaces with Finite-Order Weights for the Electronic Schödinger Equation. Ph.D. thesis, Universität Bonn (2009).
- H. Harbrecht, R. Schneider and C. Schwab, Multilevel frames for sparse tensor product spaces. Numer. Math.110 (2008) 199–220.
- R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin, Multiresolution quantum chemistry : basic theory and initial applications. J. Chem. Phys.121 (2004) 11587–11598.
- E. Hille, A class of reciprocal functions. Ann. Math.27 (1926) 427–464.
- J.O. Hirschfelder, Removal of electron-electron poles from many-electron Hamiltonians. J. Chem. Phys.39 (1963) 3145–3146.
- E. Hylleraas, Über den Grundzustand des Heliumatoms. Z. Phys.48 (1929) 469.
- T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math.X (1957) 151–177.
- T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 2nd edition. Springer-Verlag, Berlin, Heidelberg, New York 132 (1976).
- W. Klopper, R12 methods, Gaussian geminals, in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst (2000) 181–229.
- H.-C. Kreusler and H. Yserentant, The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces. Preprint 94, DFG SPP 1324 (2011).
- H. Luo, D. Kolb, H.-J. Flad, W. Hackbusch and T. Koprucki, Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys.117 (2002) 3625–3638.
- Y. Meyer and R. Coifman, Wavelets : Calderon-Zygmund and multilinear operators, Cambridge Studies in Advanced Mathematics. Cambridge University Press (1997).
- A. Neelov and S. Goedecker, An efficient numerical quadrature for the calculation of the potential energy of wavefunctions expressed in the Daubechies wavelet basis. J. Comput. Phys.217 (2006) 312–339.
- M. Nooijen, and R.J. Bartlett, Elimination of Coulombic infinities through transformation of the Hamiltonian. J. Chem. Phys.109 (1998).
- M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators IV. Academic Press (1978).
- C. Schwab and R.A. Todor, Sparse finite elements for stochastic elliptic problems – higher order moments. Computing71 (2003) 43–63.
- R. Stevenson, On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal.35 (2004) 1110–1132.
- W. Sweldens, The lifting scheme : a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal.3 (1996) 186–200.
- S. Tenno, A feasible transcorrelated method for treating electronic cusps using a frozen Gaussian geminal. Chem. Phys. Lett.330 (2000) 169–174.
- D.P. Tew and W. Klopper, New correlation factors for explicitly correlated electronic wave functions. J. Chem. Phys.123 (2005) 074101.
- H. Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math.98 (2004) 731–759.
- H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Lect. Notes Math.2000 (2010).
- H. Yserentant, The mixed regularity of electronic wave functions multiplied by explicit correlation factors. ESAIM : M2AN45 (2011) 803–824.
- A. Zeiser, Direkte Diskretisierung der Schrödingergleichung auf dünnen Gittern. Ph.D. thesis, TU Berlin (2010).
- A. Zeiser, Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput.47 (2010) 328–346.
- A. Zeiser, Wavelet approximation in weighted Sobolev spaces of mixed order with applications to the electronic Schrödinger equation. To appear in Constr. Approx. (2011) DOI : . URI10.1007/s00365-011-9138-7
- H.J.A. Zweistra, C.C.M. Samson and W. Klopper, Similarity-transformed Hamiltonians by means of Gaussian-damped interelectronic distances. Collect. Czech. Chem. Commun.68 (2003) 374–386.