Singular integral characterization of nonisotropic generalized BMO spaces
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 2, page 225-238
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCrescimbeni, Raquel. "Singular integral characterization of nonisotropic generalized BMO spaces." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 225-238. <http://eudml.org/doc/250206>.
@article{Crescimbeni2007,
abstract = {We extend a result of Coifman and Dahlberg [Singular integral characterizations of nonisotropic $H^p$ spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characterization of $H^p$ spaces by singular integrals of $\mathbb \{R\}^n$ with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if $T_\lambda $ is the family of dilations in $\mathbb \{R\}^n$ induced by a matrix with a nonnegative eigenvalue, then there exist $2n$ singular integral operators homogeneous with respect to the dilations $T_\lambda $ that characterize BMO$_\varphi $ under a natural condition on $\varphi $.},
author = {Crescimbeni, Raquel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {singular integral; nonisotropic generalized BMO; singular integral; nonisotropic generalized BMO},
language = {eng},
number = {2},
pages = {225-238},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Singular integral characterization of nonisotropic generalized BMO spaces},
url = {http://eudml.org/doc/250206},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Crescimbeni, Raquel
TI - Singular integral characterization of nonisotropic generalized BMO spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 225
EP - 238
AB - We extend a result of Coifman and Dahlberg [Singular integral characterizations of nonisotropic $H^p$ spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characterization of $H^p$ spaces by singular integrals of $\mathbb {R}^n$ with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if $T_\lambda $ is the family of dilations in $\mathbb {R}^n$ induced by a matrix with a nonnegative eigenvalue, then there exist $2n$ singular integral operators homogeneous with respect to the dilations $T_\lambda $ that characterize BMO$_\varphi $ under a natural condition on $\varphi $.
LA - eng
KW - singular integral; nonisotropic generalized BMO; singular integral; nonisotropic generalized BMO
UR - http://eudml.org/doc/250206
ER -
References
top- Coifman R., Dahlberg B., Singular integral characterizations of nonisotropic spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure Math., Vol. 35, pp.231-234; Amer. Math. Soc., Providence, 1979. MR0545260
- Coifman R., Weiss G., Analyse harmonique non-conmutative sur certain espaces homogenes, Lecture Notes in Mathematics 242, Springer, Berlin-New York, 1971. MR0499948
- Crescimbeni R., Singular integral characterization of functions with conditions on the mean oscillation on spaces of homogeneous type, Rev. Un. Mat. Argentina 39 153-171 (1995). (1995) Zbl0892.42007MR1376792
- Fefferman C., Stein E., spaces of several variables, Acta Math. 129 137-193 (1972). (1972) MR0447953
- de Guzmán M., Real Variable Methods in Fourier Analysis, Mathematics Studies 46, North Holland, Amsterdam, 1981. MR0596037
- Krasnosel'skii M., Rutickii J., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961. MR0126722
- Macías R., Segovia C., Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 257-270 (1979). (1979) MR0546295
- Macías R., Segovia C., A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 271-309 (1979). (1979) MR0546296
- Viviani B., An atomic decomposition of the predual of , Rev. Mat. Iberoamericana 3 3-4 401-425 (1987). (1987) Zbl0665.46022MR0996824
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.