The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Singular integral characterization of nonisotropic generalized BMO spaces”

BMO-scale of distribution on n

René Erlín Castillo, Julio C. Ramos Fernández (2008)

Czechoslovak Mathematical Journal

Similarity:

Let S ' be the class of tempered distributions. For f S ' we denote by J - α f the Bessel potential of f of order α . We prove that if J - α f B M O , then for any λ ( 0 , 1 ) , J - α ( f ) λ B M O , where ( f ) λ = λ - n f ( φ ( λ - 1 · ) ) , φ S . Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order α > 0 belongs to the V M O space.

On the H p - L q boundedness of some fractional integral operators

Pablo Rocha, Marta Urciuolo (2012)

Czechoslovak Mathematical Journal

Similarity:

Let A 1 , , A m be n × n real matrices such that for each 1 i m , A i is invertible and A i - A j is invertible for i j . In this paper we study integral operators of the form T f ( x ) = k 1 ( x - A 1 y ) k 2 ( x - A 2 y ) k m ( x - A m y ) f ( y ) d y , k i ( y ) = j 2 j n / q i ϕ i , j ( 2 j y ) , 1 q i < , 1 / q 1 + 1 / q 2 + + 1 / q m = 1 - r , 0 r < 1 , and ϕ i , j satisfying suitable regularity conditions. We obtain the boundedness of T : H p ( n ) L q ( n ) for 0 < p < 1 / r and 1 / q = 1 / p - r . We also show that we can not expect the H p - H q boundedness of this kind of operators.