Variable exponent Sobolev spaces with zero boundary values

Petteri Harjulehto

Mathematica Bohemica (2007)

  • Volume: 132, Issue: 2, page 125-136
  • ISSN: 0862-7959

Abstract

top
We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of n .

How to cite

top

Harjulehto, Petteri. "Variable exponent Sobolev spaces with zero boundary values." Mathematica Bohemica 132.2 (2007): 125-136. <http://eudml.org/doc/250265>.

@article{Harjulehto2007,
abstract = {We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of $\{\mathbb \{R\}^n\}$.},
author = {Harjulehto, Petteri},
journal = {Mathematica Bohemica},
keywords = {variable exponent; Sobolev space; zero boundary value; variable exponent; Sobolev space; zero boundary value},
language = {eng},
number = {2},
pages = {125-136},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variable exponent Sobolev spaces with zero boundary values},
url = {http://eudml.org/doc/250265},
volume = {132},
year = {2007},
}

TY - JOUR
AU - Harjulehto, Petteri
TI - Variable exponent Sobolev spaces with zero boundary values
JO - Mathematica Bohemica
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 132
IS - 2
SP - 125
EP - 136
AB - We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of ${\mathbb {R}^n}$.
LA - eng
KW - variable exponent; Sobolev space; zero boundary value; variable exponent; Sobolev space; zero boundary value
UR - http://eudml.org/doc/250265
ER -

References

top
  1. Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), 121–140. (2001) MR1814973
  2. Function Spaces and Potential Theory, Springer, Berlin, 1996. (1996) MR1411441
  3. The maximal operator on variable L p spaces, Ann. Acad. Sci. Fenn. 28 (2003), 223–238. (2003) MR1976842
  4. Maximal operator on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245–254. (2004) MR2057643
  5. Calderón-Zygmund operators on generalized Lebesgue spaces L p ( · ) and problems related to fluid dynamics, J. Reine Ang. Math. 563 (2003), 197–220. (2003) MR2009242
  6. Density of smooth functions in W k , p ( x ) ( Ω ) , Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. (1992) MR1177754
  7. Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital. 7-B (2004), 129–157. (2004) MR2044264
  8. On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), 424–446. (2001) MR1866056
  9. Lebesgue points in variable exponent spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), 295–306. (2004) MR2097234
  10. Sobolev capacity on the space W 1 , p ( · ) ( n ) , J. Funct. Spaces Appl. 1 (2003), 17–33. (2003) MR2011498
  11. The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), 205–222. (2006) MR2255345
  12. On the density of continuous functions in variable exponent Sobolev space, Rev. Mat. Iberoamericana 23 (2007), 215–237. (2007) Zbl1144.46031MR2351132
  13. Counter examples of regularity in variable exponent Sobolev spaces, The -Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), 133–143, Contemp. Math. 367, Amer. Math. Soc., Providence, RI, 2005. (2005) Zbl1084.46025MR2126704
  14. A remark on the uniqueness of quasicontinuous functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), 261–262. (1998) 
  15. Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), 233–247. (2000) MR1752853
  16. Maximal and fractional operators in weighted L p ( x ) spaces, Rev. Mat. Iberoamericana 20 (2004), 493–515. (2004) MR2073129
  17. On spaces L p ( x ) and W 1 , p ( x ) , Czech. Math. J. 41 (1991), 592–618. (1991) 
  18. Some remarks on the Hardy-Littlewood maximal function on variable L p spaces, Math. Z. 251 (2005), 509–521. (2005) MR2190341
  19. Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837–842. (1934) Zbl0010.34606MR1562984
  20. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer, Berlin, 1983. (1983) Zbl0557.46020MR0724434
  21. Hardy-Littlewood maximal operator on L p ( x ) ( n ) , Math. Inequal. Appl. 7 (2004), 255–266. (2004) MR2057644
  22. Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–212. (1931) Zbl0003.25203MR0180849
  23. An example of a space L p ( x ) on which the Hardy-Littlewood maximal operator is not bounded, Expo. Math. 19 (2001), 369–371. (2001) MR1876258
  24. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer, Berlin, 2000. (2000) MR1810360
  25. Convolution and potential type operators in L p ( x ) ( n ) , Integr. Transform. and Special Funct. 7 (1998), 261–284. (1998) MR1775832
  26. Denseness of C 0 ( n ) in the generalized Sobolev spaces W m , p ( x ) ( n ) , Direct and inverse problems of mathematical physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333–342. (2000) MR1766309
  27. On the topology of the space L p ( t ) ( [ 0 ; 1 ] ) , Matem. Zametki 26 (1979), 613–632. (1979) MR0552723
  28. Sobolev functions whose inner trace at the boundary is zero, Ark. Mat. 37 (1999), 373–380. (1999) MR1714762
  29. Averaging of functions of the calculus of variations and elasticity theory, Math. USSR-Izv. 29 (1987), 33–66. (1987) MR0864171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.