Variable exponent Sobolev spaces with zero boundary values

Petteri Harjulehto

Mathematica Bohemica (2007)

  • Volume: 132, Issue: 2, page 125-136
  • ISSN: 0862-7959

Abstract

top
We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of n .

How to cite

top

Harjulehto, Petteri. "Variable exponent Sobolev spaces with zero boundary values." Mathematica Bohemica 132.2 (2007): 125-136. <http://eudml.org/doc/250265>.

@article{Harjulehto2007,
abstract = {We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of $\{\mathbb \{R\}^n\}$.},
author = {Harjulehto, Petteri},
journal = {Mathematica Bohemica},
keywords = {variable exponent; Sobolev space; zero boundary value; variable exponent; Sobolev space; zero boundary value},
language = {eng},
number = {2},
pages = {125-136},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variable exponent Sobolev spaces with zero boundary values},
url = {http://eudml.org/doc/250265},
volume = {132},
year = {2007},
}

TY - JOUR
AU - Harjulehto, Petteri
TI - Variable exponent Sobolev spaces with zero boundary values
JO - Mathematica Bohemica
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 132
IS - 2
SP - 125
EP - 136
AB - We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of ${\mathbb {R}^n}$.
LA - eng
KW - variable exponent; Sobolev space; zero boundary value; variable exponent; Sobolev space; zero boundary value
UR - http://eudml.org/doc/250265
ER -

References

top
  1. 10.1007/s002050100117, Arch. Ration. Mech. Anal. 156 (2001), 121–140. (2001) MR1814973DOI10.1007/s002050100117
  2. Function Spaces and Potential Theory, Springer, Berlin, 1996. (1996) MR1411441
  3. The maximal operator on variable L p spaces, Ann. Acad. Sci. Fenn. 28 (2003), 223–238. (2003) MR1976842
  4. Maximal operator on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245–254. (2004) MR2057643
  5. Calderón-Zygmund operators on generalized Lebesgue spaces L p ( · ) and problems related to fluid dynamics, J. Reine Ang. Math. 563 (2003), 197–220. (2003) MR2009242
  6. 10.1098/rspa.1992.0059, Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. (1992) MR1177754DOI10.1098/rspa.1992.0059
  7. Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital. 7-B (2004), 129–157. (2004) MR2044264
  8. On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), 424–446. (2001) MR1866056
  9. Lebesgue points in variable exponent spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), 295–306. (2004) MR2097234
  10. Sobolev capacity on the space W 1 , p ( · ) ( n ) , J. Funct. Spaces Appl. 1 (2003), 17–33. (2003) MR2011498
  11. 10.1007/s11118-006-9023-3, Potential Anal. 25 (2006), 205–222. (2006) MR2255345DOI10.1007/s11118-006-9023-3
  12. On the density of continuous functions in variable exponent Sobolev space, Rev. Mat. Iberoamericana 23 (2007), 215–237. (2007) Zbl1144.46031MR2351132
  13. Counter examples of regularity in variable exponent Sobolev spaces, The -Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), 133–143, Contemp. Math. 367, Amer. Math. Soc., Providence, RI, 2005. (2005) Zbl1084.46025MR2126704
  14. A remark on the uniqueness of quasicontinuous functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), 261–262. (1998) 
  15. 10.1023/A:1008601220456, Potential Anal. 12 (2000), 233–247. (2000) MR1752853DOI10.1023/A:1008601220456
  16. Maximal and fractional operators in weighted L p ( x ) spaces, Rev. Mat. Iberoamericana 20 (2004), 493–515. (2004) MR2073129
  17. On spaces L p ( x ) and W 1 , p ( x ) , Czech. Math. J. 41 (1991), 592–618. (1991) 
  18. 10.1007/s00209-005-0818-5, Math. Z. 251 (2005), 509–521. (2005) MR2190341DOI10.1007/s00209-005-0818-5
  19. 10.1090/S0002-9904-1934-05978-0, Bull. Amer. Math. Soc. 40 (1934), 837–842. (1934) Zbl0010.34606MR1562984DOI10.1090/S0002-9904-1934-05978-0
  20. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer, Berlin, 1983. (1983) Zbl0557.46020MR0724434
  21. Hardy-Littlewood maximal operator on L p ( x ) ( n ) , Math. Inequal. Appl. 7 (2004), 255–266. (2004) MR2057644
  22. 10.4064/sm-3-1-200-211, Studia Math. 3 (1931), 200–212. (1931) Zbl0003.25203MR0180849DOI10.4064/sm-3-1-200-211
  23. 10.1016/S0723-0869(01)80023-2, Expo. Math. 19 (2001), 369–371. (2001) MR1876258DOI10.1016/S0723-0869(01)80023-2
  24. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer, Berlin, 2000. (2000) MR1810360
  25. 10.1080/10652469808819204, Integr. Transform. and Special Funct. 7 (1998), 261–284. (1998) MR1775832DOI10.1080/10652469808819204
  26. Denseness of C 0 ( n ) in the generalized Sobolev spaces W m , p ( x ) ( n ) , Direct and inverse problems of mathematical physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333–342. (2000) MR1766309
  27. On the topology of the space L p ( t ) ( [ 0 ; 1 ] ) , Matem. Zametki 26 (1979), 613–632. (1979) MR0552723
  28. 10.1007/BF02412221, Ark. Mat. 37 (1999), 373–380. (1999) MR1714762DOI10.1007/BF02412221
  29. 10.1070/IM1987v029n01ABEH000958, Math. USSR-Izv. 29 (1987), 33–66. (1987) MR0864171DOI10.1070/IM1987v029n01ABEH000958

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.